@phdthesis{Morozov2005, author = {Morozov, Alexei}, title = {Optimierung von Fehlererkennungsschaltungen auf der Grundlage von komplement{\"a}ren Erg{\"a}nzungen f{\"u}r 1-aus-3 und Berger Codes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5360}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Die Dissertation stellt eine neue Herangehensweise an die L{\"o}sung der Aufgabe der funktionalen Diagnostik digitaler Systeme vor. In dieser Arbeit wird eine neue Methode f{\"u}r die Fehlererkennung vorgeschlagen, basierend auf der Logischen Erg{\"a}nzung und der Verwendung von Berger-Codes und dem 1-aus-3 Code. Die neue Fehlererkennungsmethode der Logischen Erg{\"a}nzung gestattet einen hohen Optimierungsgrad der ben{\"o}tigten Realisationsfl{\"a}che der konstruierten Fehlererkennungsschaltungen. Außerdem ist eins der wichtigen in dieser Dissertation gel{\"o}sten Probleme die Synthese vollst{\"a}ndig selbstpr{\"u}fender Schaltungen.}, subject = {logische Erg{\"a}nzung}, language = {de} } @phdthesis{Harmeling2004, author = {Harmeling, Stefan}, title = {Independent component analysis and beyond}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001540}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {'Independent component analysis' (ICA) ist ein Werkzeug der statistischen Datenanalyse und Signalverarbeitung, welches multivariate Signale in ihre Quellkomponenten zerlegen kann. Obwohl das klassische ICA Modell sehr n{\"u}tzlich ist, gibt es viele Anwendungen, die Erweiterungen von ICA erfordern. In dieser Dissertation pr{\"a}sentieren wir neue Verfahren, die die Funktionalit{\"a}t von ICA erweitern: (1) Zuverl{\"a}ssigkeitsanalyse und Gruppierung von unabh{\"a}ngigen Komponenten durch Hinzuf{\"u}gen von Rauschen, (2) robuste und {\"u}berbestimmte ('over-complete') ICA durch Ausreissererkennung, und (3) nichtlineare ICA mit Kernmethoden.}, language = {en} } @phdthesis{Dietze2004, author = {Dietze, Stefan}, title = {Modell und Optimierungsansatz f{\"u}r Open Source Softwareentwicklungsprozesse}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001594}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Gerade in den letzten Jahren erfuhr Open Source Software (OSS) eine zunehmende Verbreitung und Popularit{\"a}t und hat sich in verschiedenen Anwendungsdom{\"a}nen etabliert. Die Prozesse, welche sich im Kontext der OSS-Entwicklung (auch: OSSD \– Open Source Software-Development) evolution{\"a}r herausgebildet haben, weisen in den verschiedenen OSS-Entwicklungsprojekten z.T. {\"a}hnliche Eigenschaften und Strukturen auf und auch die involvierten Entit{\"a}ten, wie z.B. Artefakte, Rollen oder Software-Werkzeuge sind weitgehend miteinander vergleichbar. Dies motiviert den Gedanken, ein verallgemeinerbares Modell zu entwickeln, welches die generalisierbaren Entwicklungsprozesse im Kontext von OSS zu einem {\"u}bertragbaren Modell abstrahiert. Auch in der Wissenschaftsdisziplin des Software Engineering (SE) wurde bereits erkannt, dass sich der OSSD-Ansatz in verschiedenen Aspekten erheblich von klassischen (propriet{\"a}ren) Modellen des SE unterscheidet und daher diese Methoden einer eigenen wissenschaftlichen Betrachtung bed{\"u}rfen. In verschiedenen Publikationen wurden zwar bereits einzelne Aspekte der OSS-Entwicklung analysiert und Theorien {\"u}ber die zugrundeliegenden Entwicklungsmethoden formuliert, aber es existiert noch keine umfassende Beschreibung der typischen Prozesse der OSSD-Methodik, die auf einer empirischen Untersuchung existierender OSS-Entwicklungsprojekte basiert. Da dies eine Voraussetzung f{\"u}r die weitere wissenschaftliche Auseinandersetzung mit OSSD-Prozessen darstellt, wird im Rahmen dieser Arbeit auf der Basis vergleichender Fallstudien ein deskriptives Modell der OSSD-Prozesse hergeleitet und mit Modellierungselementen der UML formalisiert beschrieben. Das Modell generalisiert die identifizierten Prozesse, Prozessentit{\"a}ten und Software-Infrastrukturen der untersuchten OSSD-Projekte. Es basiert auf einem eigens entwickelten Metamodell, welches die zu analysierenden Entit{\"a}ten identifiziert und die Modellierungssichten und -elemente beschreibt, die zur UML-basierten Beschreibung der Entwicklungsprozesse verwendet werden. In einem weiteren Arbeitsschritt wird eine weiterf{\"u}hrende Analyse des identifizierten Modells durchgef{\"u}hrt, um Implikationen, und Optimierungspotentiale aufzuzeigen. Diese umfassen beispielsweise die ungen{\"u}gende Plan- und Terminierbarkeit von Prozessen oder die beobachtete Tendenz von OSSD-Akteuren, verschiedene Aktivit{\"a}ten mit unterschiedlicher Intensit{\"a}t entsprechend der subjektiv wahrgenommenen Anreize auszu{\"u}ben, was zur Vernachl{\"a}ssigung einiger Prozesse f{\"u}hrt. Anschließend werden Optimierungszielstellungen dargestellt, die diese Unzul{\"a}nglichkeiten adressieren, und ein Optimierungsansatz zur Verbesserung des OSSD-Modells wird beschrieben. Dieser Ansatz umfasst die Erweiterung der identifizierten Rollen, die Einf{\"u}hrung neuer oder die Erweiterung bereits identifizierter Prozesse und die Modifikation oder Erweiterung der Artefakte des generalisierten OSS-Entwicklungsmodells. Die vorgestellten Modellerweiterungen dienen vor allem einer gesteigerten Qualit{\"a}tssicherung und der Kompensation von vernachl{\"a}ssigten Prozessen, um sowohl die entwickelte Software- als auch die Prozessqualit{\"a}t im OSSD-Kontext zu verbessern. Desweiteren werden Softwarefunktionalit{\"a}ten beschrieben, welche die identifizierte bestehende Software-Infrastruktur erweitern und eine gesamtheitlichere, softwaretechnische Unterst{\"u}tzung der OSSD-Prozesse erm{\"o}glichen sollen. Abschließend werden verschiedene Anwendungsszenarien der Methoden des OSS-Entwicklungsmodells, u.a. auch im kommerziellen SE, identifiziert und ein Implementierungsansatz basierend auf der OSS GENESIS vorgestellt, der zur Implementierung und Unterst{\"u}tzung des OSSD-Modells verwendet werden kann.}, language = {de} } @phdthesis{Knoepfel2004, author = {Kn{\"o}pfel, Andreas}, title = {Konzepte der Beschreibung interaktiver Systeme}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2898}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Interaktive System sind dynamische Systeme mit einem zumeist informationellen Kern, die {\"u}ber eine Benutzungsschnittstelle von einem oder mehreren Benutzern bedient werden k{\"o}nnen. Grundlage f{\"u}r die Benutzung interaktiver Systeme ist das Verst{\"a}ndnis von Zweck und Funktionsweise. Allein aus Form und Gestalt der Benutzungsschnittstelle ergibt sich ein solches Verst{\"a}ndnis nur in einfachen F{\"a}llen. Mit steigender Komplexit{\"a}t ist daher eine verst{\"a}ndliche Beschreibung solcher Systeme f{\"u}r deren Entwicklung und Benutzung unverzichtbar. Abh{\"a}ngig von ihrem Zweck variieren die Formen vorgefundener Beschreibungen in der Literatur sehr stark. Ausschlaggebend f{\"u}r die Verst{\"a}ndlichkeit einer Beschreibung ist jedoch prim{\"a}r die ihr zugrundeliegende Begriffswelt. Zur Beschreibung allgemeiner komplexer diskreter Systeme - aufbauend auf einer getrennten Betrachtung von Aufbau-, Ablauf- und Wertestrukturen - existiert eine bew{\"a}hrte Begriffswelt. Eine Spezialisierung dieser Begriffs- und Vorstellungswelt, die den unterschiedlichen Betrachtungsebenen interaktiver Systeme gerecht wird und die als Grundlage beliebiger Beschreibungsans{\"a}tze interaktiver Systeme dienen kann, gibt es bisher nicht. Ziel dieser Arbeit ist die Bereitstellung einer solchen Begriffswelt zur effizienten Kommunikation der Strukturen interaktiver Systeme. Dadurch soll die Grundlage f{\"u}r eine sinnvolle Erg{\"a}nzung bestehender Beschreibungs- und Entwicklungsans{\"a}tze geschaffen werden. Prinzipien der Gestaltung von Benutzungsschnittstellen, Usability- oder Ergonomiebetrachtungen stehen nicht im Mittelpunkt der Arbeit. Ausgehend von der informationellen Komponente einer Benutzungsschnittstelle werden drei Modellebenen abgegrenzt, die bei der Betrachtung eines interaktiven Systems zu unterscheiden sind. Jede Modellebene ist durch eine typische Begriffswelt gekennzeichnet, die ihren Ursprung in einer aufbauverwurzelten Vorstellung hat. Der durchg{\"a}ngige Bezug auf eine Systemvorstellung unterscheidet diesen Ansatz von dem bereits bekannten Konzept der Abgrenzung unterschiedlicher Ebenen verschiedenartiger Entwurfsentscheidungen. Die Fundamental Modeling Concepts (FMC) bilden dabei die Grundlage f{\"u}r die Findung und die Darstellung von Systemstrukturen. Anhand bestehender Systembeschreibungen wird gezeigt, wie die vorgestellte Begriffswelt zur Modellfindung genutzt werden kann. Dazu wird eine repr{\"a}sentative Auswahl vorgefundener Systembeschreibungen aus der einschl{\"a}gigen Literatur daraufhin untersucht, in welchem Umfang durch sie die Vorstellungswelt dynamischer Systeme zum Ausdruck kommt. Defizite in der urspr{\"u}nglichen Darstellung werden identifiziert. Anhand von Alternativmodellen zu den betrachteten Systemen wird der Nutzen der vorgestellten Begriffswelt und Darstellungsweise demonstriert.}, subject = {Systementwurf}, language = {de} } @phdthesis{Groene2004, author = {Gr{\"o}ne, Bernhard}, title = {Konzeptionelle Patterns und ihre Darstellung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2302}, school = {Universit{\"a}t Potsdam}, pages = {vii ; 120}, year = {2004}, abstract = {Zur Beherrschung großer Systeme, insbesondere zur Weitergabe und Nutzung von Erfahrungswissen in der fr{\"u}hen Entwurfs- und Planungsphase, ben{\"o}tigt man Abstraktionen f{\"u}r deren Strukturen. Trennt man Software- von Systemstrukturen, kann man mit letzteren Systeme auf ausreichend hohem Abstraktionsgrad beschreiben.Software-Patterns dienen dazu, Erfahrungswissen bez{\"u}glich programmierter Systeme strukturiert weiterzugeben. Dabei wird unterschieden zwischen Idiomen, die sich auf L{\"o}sungen mit einer bestimmten Programmiersprache beziehen, Design-Patterns, die nur einen kleinen Teil des Programms betreffen und Architektur-Patterns, deren Einfluss {\"u}ber einen gr{\"o}ßeren Teil oder gar das komplette Programm reicht. Eine Untersuchung von existierenden Patterns zeigt, dass deren Konzepte n{\"u}tzlich zum Finden von Systemstrukturen sind. Die grafische Darstellung dieser Patterns ist dagegen oft auf Software-Strukturen eingeschr{\"a}nkt und ist f{\"u}r die Vermittlung von Erfahrungen zum Finden von Systemstrukturen meist nicht geeignet. Daher wird die Kategorie der konzeptionellen Patterns mit einer darauf abgestimmten grafischen Darstellungsform vorgeschlagen, bei denen Problem und L{\"o}sungsvorschlag im Bereich der Systemstrukturen liegen. Sie betreffen informationelle Systeme, sind aber nicht auf L{\"o}sungen mit Software beschr{\"a}nkt. Die Systemstrukturen werden grafisch dargestellt, wobei daf{\"u}r die Fundamental Modeling Concepts (FMC) verwendet werden, die zur Darstellung von Systemstrukturen entwickelt wurden.}, language = {de} } @phdthesis{Dramlitsch2002, author = {Dramlitsch, Thomas}, title = {Distributed computations in a dynamic, heterogeneous Grid environment}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000759}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Die immer dichtere und schnellere Vernetzung von Rechnern und Rechenzentren {\"u}ber Hochgeschwindigkeitsnetzwerke erm{\"o}glicht eine neue Art des wissenschaftlich verteilten Rechnens, bei der geographisch weit auseinanderliegende Rechenkapazit{\"a}ten zu einer Gesamtheit zusammengefasst werden k{\"o}nnen. Dieser so entstehende virtuelle Superrechner, der selbst aus mehreren Grossrechnern besteht, kann dazu genutzt werden Probleme zu berechnen, f{\"u}r die die einzelnen Grossrechner zu klein sind. Die Probleme, die numerisch mit heutigen Rechenkapazit{\"a}ten nicht l{\"o}sbar sind, erstrecken sich durch s{\"a}mtliche Gebiete der heutigen Wissenschaft, angefangen von Astrophysik, Molek{\"u}lphysik, Bioinformatik, Meteorologie, bis hin zur Zahlentheorie und Fluiddynamik um nur einige Gebiete zu nennen. Je nach Art der Problemstellung und des L{\"o}sungsverfahrens gestalten sich solche "Meta-Berechnungen" mehr oder weniger schwierig. Allgemein kann man sagen, dass solche Berechnungen um so schwerer und auch um so uneffizienter werden, je mehr Kommunikation zwischen den einzelnen Prozessen (oder Prozessoren) herrscht. Dies ist dadurch begr{\"u}ndet, dass die Bandbreiten bzw. Latenzzeiten zwischen zwei Prozessoren auf demselben Grossrechner oder Cluster um zwei bis vier Gr{\"o}ssenordnungen h{\"o}her bzw. niedriger liegen als zwischen Prozessoren, welche hunderte von Kilometern entfernt liegen. Dennoch bricht nunmehr eine Zeit an, in der es m{\"o}glich ist Berechnungen auf solch virtuellen Supercomputern auch mit kommunikationsintensiven Programmen durchzuf{\"u}hren. Eine grosse Klasse von kommunikations- und berechnungsintensiven Programmen ist diejenige, die die L{\"o}sung von Differentialgleichungen mithilfe von finiten Differenzen zum Inhalt hat. Gerade diese Klasse von Programmen und deren Betrieb in einem virtuellen Superrechner wird in dieser vorliegenden Dissertation behandelt. Methoden zur effizienteren Durchf{\"u}hrung von solch verteilten Berechnungen werden entwickelt, analysiert und implementiert. Der Schwerpunkt liegt darin vorhandene, klassische Parallelisierungsalgorithmen zu analysieren und so zu erweitern, dass sie vorhandene Informationen (z.B. verf{\"u}gbar durch das Globus Toolkit) {\"u}ber Maschinen und Netzwerke zur effizienteren Parallelisierung nutzen. Soweit wir wissen werden solche Zusatzinformationen kaum in relevanten Programmen genutzt, da der Grossteil aller Parallelisierungsalgorithmen implizit f{\"u}r die Ausf{\"u}hrung auf Grossrechnern oder Clustern entwickelt wurde.}, language = {en} } @phdthesis{Lanfermann2002, author = {Lanfermann, Gerd}, title = {Nomadic migration : a service environment for autonomic computing on the Grid}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000773}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {In den vergangenen Jahren ist es zu einer dramatischen Vervielfachung der verf{\"u}gbaren Rechenzeit gekommen. Diese 'Grid Ressourcen' stehen jedoch nicht als kontinuierlicher Strom zur Verf{\"u}gung, sondern sind {\"u}ber verschiedene Maschinentypen, Plattformen und Betriebssysteme verteilt, die jeweils durch Netzwerke mit fluktuierender Bandbreite verbunden sind. Es wird f{\"u}r Wissenschaftler zunehmend schwieriger, die verf{\"u}gbaren Ressourcen f{\"u}r ihre Anwendungen zu nutzen. Wir glauben, dass intelligente, selbstbestimmende Applikationen in der Lage sein sollten, ihre Ressourcen in einer dynamischen und heterogenen Umgebung selbst zu w{\"a}hlen: Migrierende Applikationen suchen eine neue Ressource, wenn die alte aufgebraucht ist. 'Spawning'-Anwendungen lassen Algorithmen auf externen Maschinen laufen, um die Hauptanwendung zu beschleunigen. Applikationen werden neu gestartet, sobald ein Absturz endeckt wird. Alle diese Verfahren k{\"o}nnen ohne menschliche Interaktion erfolgen. Eine verteilte Rechenumgebung besitzt eine nat{\"u}rliche Unverl{\"a}sslichkeit. Jede Applikation, die mit einer solchen Umgebung interagiert, muss auf die gest{\"o}rten Komponenten reagieren k{\"o}nnen: schlechte Netzwerkverbindung, abst{\"u}rzende Maschinen, fehlerhafte Software. Wir konstruieren eine verl{\"a}ssliche Serviceinfrastruktur, indem wir der Serviceumgebung eine 'Peer-to-Peer'-Topology aufpr{\"a}gen. Diese "Grid Peer Service" Infrastruktur beinhaltet Services wie Migration und Spawning, als auch Services zum Starten von Applikationen, zur Datei{\"u}bertragung und Auswahl von Rechenressourcen. Sie benutzt existierende Gridtechnologie wo immer m{\"o}glich, um ihre Aufgabe durchzuf{\"u}hren. Ein Applikations-Information- Server arbeitet als generische Registratur f{\"u}r alle Teilnehmer in der Serviceumgebung. Die Serviceumgebung, die wir entwickelt haben, erlaubt es Applikationen z.B. eine Relokationsanfrage an einen Migrationsserver zu stellen. Der Server sucht einen neuen Computer, basierend auf den {\"u}bermittelten Ressourcen-Anforderungen. Er transferiert den Statusfile des Applikation zu der neuen Maschine und startet die Applikation neu. Obwohl das umgebende Ressourcensubstrat nicht kontinuierlich ist, k{\"o}nnen wir kontinuierliche Berechnungen auf Grids ausf{\"u}hren, indem wir die Applikation migrieren. Wir zeigen mit realistischen Beispielen, wie sich z.B. ein traditionelles Genom-Analyse-Programm leicht modifizieren l{\"a}sst, um selbstbestimmte Migrationen in dieser Serviceumgebung durchzuf{\"u}hren.}, subject = {Peer-to-Peer-Netz ; GRID computing ; Zuverl{\"a}ssigkeit ; Web Services ; Betriebsmittelverwaltung ; Migration}, language = {en} }