@inproceedings{RolfBergesHubwieseretal.2010, author = {Rolf, Arno and Berges, Marc and Hubwieser, Peter and Kehrer, Timo and Kelter, Udo and Romeike, Ralf and Frenkel, Marcus and Karsten, Weicker and Reinhardt, Wolfgang and Mascher, Michael and G{\"u}l, Senol and Magenheim, Johannes and Raimer, Stephan and Diethelm, Ira and D{\"u}nnebier, Malte and Gabor, Kiss and Susanne, Boll and Rolf, Meinhardt and Gronewold, Sabine and Krekeler, Larissa and Jahnke, Isa and Haertel, Tobias and Mattick, Volker and Lettow, Karsten and Hafer, J{\"o}rg and Ludwig, Joachim and Schumann, Marlen and Laroque, Christoph and Schulte, Jonas and Urban, Diana}, title = {HDI2010 - Tagungsband der 4. Fachtagung zur "Hochschuldidaktik Informatik"}, editor = {Engbring, Dieter and Keil, Reinhard and Magenheim, Johannes and Selke, Harald}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-100-4}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49167}, pages = {105}, year = {2010}, abstract = {Mit der 4. Tagung zur Hochschuldidaktik Informatik wird eine Reihe fortgesetzt, die ihren Anfang 1998 in Stuttgart unter der {\"U}berschrift „Informatik und Ausbildung" genommen hat. Seither dienen diese Tagungen den Lehrenden im Bereich der Hochschulinformatik als Forum der Information und des Diskurses {\"u}ber aktuelle didaktische und bildungspolitische Entwicklungen im Bereich der Informatikausbildung. Aktuell z{\"a}hlen dazu insbesondere Fragen der Bildungsrelevanz informatischer Inhalte und der Herausforderung durch eine st{\"a}rkere Kompetenzorientierung in der Informatik. Die eingereichten Beitr{\"a}ge zur HDI 2010 in Paderborn veranschaulichen unterschiedliche Bem{\"u}hungen, sich mit relevanten Problemen der Informatikdidaktik an Hochschulen in Deutschland (und z. T. auch im Ausland) auseinanderzusetzen. Aus der Breite des Spektrums der Einreichungen ergaben sich zugleich Probleme bei der Begutachtung. Letztlich konnten von den zahlreichen Einreichungen nur drei die Gutachter so {\"u}berzeugen, dass sie uneingeschr{\"a}nkt in ihrer Langfassung akzeptiert wurden. Neun weitere Einreichungen waren trotz Kritik {\"u}berwiegend positiv begutachtet worden, so dass wir diese als Kurzfassung bzw. Diskussionspapier in die Tagung aufgenommen haben.}, language = {de} } @inproceedings{BandaGallagher2010, author = {Banda, Gourinath and Gallagher, John P.}, title = {Constraint-based abstraction of a model checker for infinite state systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41516}, year = {2010}, abstract = {Abstract interpretation-based model checking provides an approach to verifying properties of infinite-state systems. In practice, most previous work on abstract model checking is either restricted to verifying universal properties, or develops special techniques for temporal logics such as modal transition systems or other dual transition systems. By contrast we apply completely standard techniques for constructing abstract interpretations to the abstraction of a CTL semantic function, without restricting the kind of properties that can be verified. Furthermore we show that this leads directly to implementation of abstract model checking algorithms for abstract domains based on constraints, making use of an SMT solver.}, language = {en} } @inproceedings{PalixLawallThomasetal.2010, author = {Palix, Nicolas and Lawall, Julia L. and Thomas, Ga{\"e}l and Muller, Gilles}, title = {How Often do Experts Make Mistakes?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41327}, year = {2010}, abstract = {Large open-source software projects involve developers with a wide variety of backgrounds and expertise. Such software projects furthermore include many internal APIs that developers must understand and use properly. According to the intended purpose of these APIs, they are more or less frequently used, and used by developers with more or less expertise. In this paper, we study the impact of usage patterns and developer expertise on the rate of defects occurring in the use of internal APIs. For this preliminary study, we focus on memory management APIs in the Linux kernel, as the use of these has been shown to be highly error prone in previous work. We study defect rates and developer expertise, to consider e.g., whether widely used APIs are more defect prone because they are used by less experienced developers, or whether defects in widely used APIs are more likely to be fixed.}, language = {en} } @inproceedings{OPUS4-3948, title = {Preface}, editor = {Adams, Bram and Haupt, Michael and Lohmann, Daniel}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41338}, year = {2010}, abstract = {Aspect-oriented programming, component models, and design patterns are modern and actively evolving techniques for improving the modularization of complex software. In particular, these techniques hold great promise for the development of "systems infrastructure" software, e.g., application servers, middleware, virtual machines, compilers, operating systems, and other software that provides general services for higher-level applications. The developers of infrastructure software are faced with increasing demands from application programmers needing higher-level support for application development. Meeting these demands requires careful use of software modularization techniques, since infrastructural concerns are notoriously hard to modularize. Aspects, components, and patterns provide very different means to deal with infrastructure software, but despite their differences, they have much in common. For instance, component models try to free the developer from the need to deal directly with services like security or transactions. These are primary examples of crosscutting concerns, and modularizing such concerns are the main target of aspect-oriented languages. Similarly, design patterns like Visitor and Interceptor facilitate the clean modularization of otherwise tangled concerns. Building on the ACP4IS meetings at AOSD 2002-2009, this workshop aims to provide a highly interactive forum for researchers and developers to discuss the application of and relationships between aspects, components, and patterns within modern infrastructure software. The goal is to put aspects, components, and patterns into a common reference frame and to build connections between the software engineering and systems communities.}, language = {en} } @inproceedings{BynensVanLanduytTruyenetal.2010, author = {Bynens, Maarten and Van Landuyt, Dimitri and Truyen, Eddy and Joosen, Wouter}, title = {Towards reusable aspects: the callback mismatch problem}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41347}, year = {2010}, abstract = {Because software development is increasingly expensive and timeconsuming, software reuse gains importance. Aspect-oriented software development modularizes crosscutting concerns which enables their systematic reuse. Literature provides a number of AOP patterns and best practices for developing reusable aspects based on compelling examples for concerns like tracing, transactions and persistence. However, such best practices are lacking for systematically reusing invasive aspects. In this paper, we present the 'callback mismatch problem'. This problem arises in the context of abstraction mismatch, in which the aspect is required to issue a callback to the base application. As a consequence, the composition of invasive aspects is cumbersome to implement, difficult to maintain and impossible to reuse. We motivate this problem in a real-world example, show that it persists in the current state-of-the-art, and outline the need for advanced aspectual composition mechanisms to deal with this.}, language = {en} } @inproceedings{GoltzPieth2010, author = {Goltz, Hans-Joachim and Pieth, Norbert}, title = {A tool for generating partition schedules of multiprocessor systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41556}, year = {2010}, abstract = {A deterministic cycle scheduling of partitions at the operating system level is supposed for a multiprocessor system. In this paper, we propose a tool for generating such schedules. We use constraint based programming and develop methods and concepts for a combined interactive and automatic partition scheduling system. This paper is also devoted to basic methods and techniques for modeling and solving this partition scheduling problem. Initial application of our partition scheduling tool has proved successful and demonstrated the suitability of the methods used.}, language = {en} } @inproceedings{Harrison2010, author = {Harrison, William}, title = {Malleability, obliviousness and aspects for broadcast service attachment}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41389}, year = {2010}, abstract = {An important characteristic of Service-Oriented Architectures is that clients do not depend on the service implementation's internal assignment of methods to objects. It is perhaps the most important technical characteristic that differentiates them from more common object-oriented solutions. This characteristic makes clients and services malleable, allowing them to be rearranged at run-time as circumstances change. That improvement in malleability is impaired by requiring clients to direct service requests to particular services. Ideally, the clients are totally oblivious to the service structure, as they are to aspect structure in aspect-oriented software. Removing knowledge of a method implementation's location, whether in object or service, requires re-defining the boundary line between programming language and middleware, making clearer specification of dependence on protocols, and bringing the transaction-like concept of failure scopes into language semantics as well. This paper explores consequences and advantages of a transition from object-request brokering to service-request brokering, including the potential to improve our ability to write more parallel software.}, language = {en} } @inproceedings{Schrijvers2010, author = {Schrijvers, Tom}, title = {Overview of the monadic constraint programming framework}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41411}, year = {2010}, abstract = {A constraint programming system combines two essential components: a constraint solver and a search engine. The constraint solver reasons about satisfiability of conjunctions of constraints, and the search engine controls the search for solutions by iteratively exploring a disjunctive search tree defined by the constraint program. The Monadic Constraint Programming framework gives a monadic definition of constraint programming where the solver is defined as a monad threaded through the monadic search tree. Search and search strategies can then be defined as firstclass objects that can themselves be built or extended by composable search transformers. Search transformers give a powerful and unifying approach to viewing search in constraint programming, and the resulting constraint programming system is first class and extremely flexible.}, language = {en} } @inproceedings{FanMasuharaAotanietal.2010, author = {Fan, Yang and Masuhara, Hidehiko and Aotani, Tomoyuki and Nielson, Flemming and Nielson, Hanne Riis}, title = {AspectKE*: Security aspects with program analysis for distributed systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41369}, year = {2010}, abstract = {Enforcing security policies to distributed systems is difficult, in particular, when a system contains untrusted components. We designed AspectKE*, a distributed AOP language based on a tuple space, to tackle this issue. In AspectKE*, aspects can enforce access control policies that depend on future behavior of running processes. One of the key language features is the predicates and functions that extract results of static program analysis, which are useful for defining security aspects that have to know about future behavior of a program. AspectKE* also provides a novel variable binding mechanism for pointcuts, so that pointcuts can uniformly specify join points based on both static and dynamic information about the program. Our implementation strategy performs fundamental static analysis at load-time, so as to retain runtime overheads minimal. We implemented a compiler for AspectKE*, and demonstrate usefulness of AspectKE* through a security aspect for a distributed chat system.}, language = {en} } @inproceedings{HannousseArdourelDouence2010, author = {Hannousse, Abdelhakim and Ardourel, Gilles and Douence, R{\´e}mi}, title = {Views for aspectualizing component models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41359}, year = {2010}, abstract = {Component based software development (CBSD) and aspectoriented software development (AOSD) are two complementary approaches. However, existing proposals for integrating aspects into component models are direct transposition of object-oriented AOSD techniques to components. In this article, we propose a new approach based on views. Our proposal introduces crosscutting components quite naturally and can be integrated into different component models.}, language = {en} } @inproceedings{HerreHummel2010, author = {Herre, Heinrich and Hummel, Axel}, title = {Stationary generated models of generalized logic programs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41501}, year = {2010}, abstract = {The interest in extensions of the logic programming paradigm beyond the class of normal logic programs is motivated by the need of an adequate representation and processing of knowledge. One of the most difficult problems in this area is to find an adequate declarative semantics for logic programs. In the present paper a general preference criterion is proposed that selects the 'intended' partial models of generalized logic programs which is a conservative extension of the stationary semantics for normal logic programs of [Prz91]. The presented preference criterion defines a partial model of a generalized logic program as intended if it is generated by a stationary chain. It turns out that the stationary generated models coincide with the stationary models on the class of normal logic programs. The general wellfounded semantics of such a program is defined as the set-theoretical intersection of its stationary generated models. For normal logic programs the general wellfounded semantics equals the wellfounded semantics.}, language = {en} } @inproceedings{AbdennadherIsmailKhoury2010, author = {Abdennadher, Slim and Ismail, Haythem and Khoury, Frederick}, title = {Transforming imperative algorithms to constraint handling rules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41533}, year = {2010}, abstract = {Different properties of programs, implemented in Constraint Handling Rules (CHR), have already been investigated. Proving these properties in CHR is fairly simpler than proving them in any type of imperative programming language, which triggered the proposal of a methodology to map imperative programs into equivalent CHR. The equivalence of both programs implies that if a property is satisfied for one, then it is satisfied for the other. The mapping methodology could be put to other beneficial uses. One such use is the automatic generation of global constraints, at an attempt to demonstrate the benefits of having a rule-based implementation for constraint solvers.}, language = {en} } @inproceedings{BetzRaiserFruehwirth2010, author = {Betz, Hariolf and Raiser, Frank and Fr{\"u}hwirth, Thom}, title = {Persistent constraints in constraint handling rules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41547}, year = {2010}, abstract = {In the most abstract definition of its operational semantics, the declarative and concurrent programming language CHR is trivially non-terminating for a significant class of programs. Common refinements of this definition, in closing the gap to real-world implementations, compromise on declarativity and/or concurrency. Building on recent work and the notion of persistent constraints, we introduce an operational semantics avoiding trivial non-termination without compromising on its essential features.}, language = {en} } @inproceedings{GebserHinrichsSchaubetal.2010, author = {Gebser, Martin and Hinrichs, Henrik and Schaub, Torsten H. and Thiele, Sven}, title = {xpanda: a (simple) preprocessor for adding multi-valued propositions to ASP}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41466}, year = {2010}, abstract = {We introduce a simple approach extending the input language of Answer Set Programming (ASP) systems by multi-valued propositions. Our approach is implemented as a (prototypical) preprocessor translating logic programs with multi-valued propositions into logic programs with Boolean propositions only. Our translation is modular and heavily benefits from the expressive input language of ASP. The resulting approach, along with its implementation, allows for solving interesting constraint satisfaction problems in ASP, showing a good performance.}, language = {en} } @inproceedings{OetschSchwengererTompits2010, author = {Oetsch, Johannes and Schwengerer, Martin and Tompits, Hans}, title = {Kato: a plagiarism-detection tool for answer-set programs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41485}, year = {2010}, abstract = {We present the tool Kato which is, to the best of our knowledge, the first tool for plagiarism detection that is directly tailored for answer-set programming (ASP). Kato aims at finding similarities between (segments of) logic programs to help detecting cases of plagiarism. Currently, the tool is realised for DLV programs but it is designed to handle various logic-programming syntax versions. We review basic features and the underlying methodology of the tool.}, language = {en} } @inproceedings{Zhou2010, author = {Zhou, Neng-Fa}, title = {What I have learned from all these solver competitions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41431}, year = {2010}, abstract = {In this talk, I would like to share my experiences gained from participating in four CSP solver competitions and the second ASP solver competition. In particular, I'll talk about how various programming techniques can make huge differences in solving some of the benchmark problems used in the competitions. These techniques include global constraints, table constraints, and problem-specific propagators and labeling strategies for selecting variables and values. I'll present these techniques with experimental results from B-Prolog and other CLP(FD) systems.}, language = {en} } @inproceedings{HanusKoschnicke2010, author = {Hanus, Michael and Koschnicke, Sven}, title = {An ER-based framework for declarative web programming}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41447}, year = {2010}, abstract = {We describe a framework to support the implementation of web-based systems to manipulate data stored in relational databases. Since the conceptual model of a relational database is often specified as an entity-relationship (ER) model, we propose to use the ER model to generate a complete implementation in the declarative programming language Curry. This implementation contains operations to create and manipulate entities of the data model, supports authentication, authorization, session handling, and the composition of individual operations to user processes. Furthermore and most important, the implementation ensures the consistency of the database w.r.t. the data dependencies specified in the ER model, i.e., updates initiated by the user cannot lead to an inconsistent state of the database. In order to generate a high-level declarative implementation that can be easily adapted to individual customer requirements, the framework exploits previous works on declarative database programming and web user interface construction in Curry.}, language = {en} } @inproceedings{GeskeWolf2010, author = {Geske, Ulrich and Wolf, Armin}, title = {Preface}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41401}, year = {2010}, abstract = {The workshops on (constraint) logic programming (WLP) are the annual meeting of the Society of Logic Programming (GLP e.V.) and bring together researchers interested in logic programming, constraint programming, and related areas like databases, artificial intelligence and operations research. In this decade, previous workshops took place in Dresden (2008), W{\"u}rzburg (2007), Vienna (2006), Ulm (2005), Potsdam (2004), Dresden (2002), Kiel (2001), and W{\"u}rzburg (2000). Contributions to workshops deal with all theoretical, experimental, and application aspects of constraint programming (CP) and logic programming (LP), including foundations of constraint/ logic programming. Some of the special topics are constraint solving and optimization, extensions of functional logic programming, deductive databases, data mining, nonmonotonic reasoning, , interaction of CP/LP with other formalisms like agents, XML, JAVA, program analysis, program transformation, program verification, meta programming, parallelism and concurrency, answer set programming, implementation and software techniques (e.g., types, modularity, design patterns), applications (e.g., in production, environment, education, internet), constraint/logic programming for semantic web systems and applications, reasoning on the semantic web, data modelling for the web, semistructured data, and web query languages.}, language = {en} } @inproceedings{OPUS4-3955, title = {Proceedings of the 23rd Workshop on (Constraint) Logic Programming 2009}, editor = {Geske, Ulrich and Wolf, Armin}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-026-7}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-37977}, pages = {187}, year = {2010}, abstract = {The workshops on (constraint) logic programming (WLP) are the annual meeting of the Society of Logic Programming (GLP e.V.) and bring together researchers interested in logic programming, constraint programming, and related areas like databases, artificial intelligence and operations research. The 23rd WLP was held in Potsdam at September 15 - 16, 2009. The topics of the presentations of WLP2009 were grouped into the major areas: Databases, Answer Set Programming, Theory and Practice of Logic Programming as well as Constraints and Constraint Handling Rules.}, language = {en} } @inproceedings{SurajbaliGraceCoulson2010, author = {Surajbali, Bholanathsingh and Grace, Paul and Coulson, Geoff}, title = {Preserving dynamic reconfiguration consistency in aspect oriented middleware}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41379}, year = {2010}, abstract = {Aspect-oriented middleware is a promising technology for the realisation of dynamic reconfiguration in heterogeneous distributed systems. However, like other dynamic reconfiguration approaches, AO-middleware-based reconfiguration requires that the consistency of the system is maintained across reconfigurations. AO-middleware-based reconfiguration is an ongoing research topic and several consistency approaches have been proposed. However, most of these approaches tend to be targeted at specific contexts, whereas for distributed systems it is crucial to cover a wide range of operating conditions. In this paper we propose an approach that offers distributed, dynamic reconfiguration in a consistent manner, and features a flexible framework-based consistency management approach to cover a wide range of operating conditions. We evaluate our approach by investigating the configurability and transparency of our approach and also quantify the performance overheads of the associated consistency mechanisms.}, language = {en} } @inproceedings{Cabalar2010, author = {Cabalar, Pedro}, title = {Existential quantifiers in the rule body}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41476}, year = {2010}, abstract = {In this paper we consider a simple syntactic extension of Answer Set Programming (ASP) for dealing with (nested) existential quantifiers and double negation in the rule bodies, in a close way to the recent proposal RASPL-1. The semantics for this extension just resorts to Equilibrium Logic (or, equivalently, to the General Theory of Stable Models), which provides a logic-programming interpretation for any arbitrary theory in the syntax of Predicate Calculus. We present a translation of this syntactic class into standard logic programs with variables (either disjunctive or normal, depending on the input rule heads), as those allowed by current ASP solvers. The translation relies on the introduction of auxiliary predicates and the main result shows that it preserves strong equivalence modulo the original signature.}, language = {en} } @inproceedings{GeskeGoltz2010, author = {Geske, Ulrich and Goltz, Hans-Joachim}, title = {Efficiency of difference-list programming}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41563}, year = {2010}, abstract = {The difference-list technique is described in literature as effective method for extending lists to the right without using calls of append/3. There exist some proposals for automatic transformation of list programs into differencelist programs. However, we are interested in construction of difference-list programs by the programmer, avoiding the need of a transformation step. In [GG09] it was demonstrated, how left-recursive procedures with a dangling call of append/3 can be transformed into right-recursion using the unfolding technique. For simplification of writing difference-list programs using a new cons/2 procedure was introduced. In the present paper, we investigate how efficieny is influenced using cons/2. We measure the efficiency of procedures using accumulator technique, cons/2, DCG's, and difference lists and compute the resulting speedup in respect to the simple procedure definition using append/3. Four Prolog systems were investigated and we found different behaviour concerning the speedup by difference lists. A result of our investigations is, that an often advice given in the literature for avoiding calls append/3 could not be confirmed in this strong formulation.}, language = {en} } @inproceedings{HerreHummel2010, author = {Herre, Heinrich and Hummel, Axel}, title = {A paraconsistent semantics for generalized logic programs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41496}, year = {2010}, abstract = {We propose a paraconsistent declarative semantics of possibly inconsistent generalized logic programs which allows for arbitrary formulas in the body and in the head of a rule (i.e. does not depend on the presence of any specific connective, such as negation(-as-failure), nor on any specific syntax of rules). For consistent generalized logic programs this semantics coincides with the stable generated models introduced in [HW97], and for normal logic programs it yields the stable models in the sense of [GL88].}, language = {en} } @inproceedings{Seipel2010, author = {Seipel, Dietmar}, title = {Practical Applications of Extended Deductive Databases in DATALOG*}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41457}, year = {2010}, abstract = {A wide range of additional forward chaining applications could be realized with deductive databases, if their rule formalism, their immediate consequence operator, and their fixpoint iteration process would be more flexible. Deductive databases normally represent knowledge using stratified Datalog programs with default negation. But many practical applications of forward chaining require an extensible set of user-defined built-in predicates. Moreover, they often need function symbols for building complex data structures, and the stratified fixpoint iteration has to be extended by aggregation operations. We present an new language Datalog*, which extends Datalog by stratified meta-predicates (including default negation), function symbols, and user-defined built-in predicates, which are implemented and evaluated top-down in Prolog. All predicates are subject to the same backtracking mechanism. The bottom-up fixpoint iteration can aggregate the derived facts after each iteration based on user-defined Prolog predicates.}, language = {en} } @inproceedings{Brass2010, author = {Brass, Stefan}, title = {Range restriction for general formulas}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41521}, year = {2010}, abstract = {Deductive databases need general formulas in rule bodies, not only conjuctions of literals. This is well known since the work of Lloyd and Topor about extended logic programming. Of course, formulas must be restricted in such a way that they can be effectively evaluated in finite time, and produce only a finite number of new tuples (in each iteration of the TP-operator: the fixpoint can still be infinite). It is also necessary to respect binding restrictions of built-in predicates: many of these predicates can be executed only when certain arguments are ground. Whereas for standard logic programming rules, questions of safety, allowedness, and range-restriction are relatively easy and well understood, the situation for general formulas is a bit more complicated. We give a syntactic analysis of formulas that guarantees the necessary properties.}, language = {en} }