@phdthesis{Vitagliano2024, author = {Vitagliano, Gerardo}, title = {Modeling the structure of tabular files for data preparation}, doi = {10.25932/publishup-62435}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-624351}, school = {Universit{\"a}t Potsdam}, pages = {ii, 114}, year = {2024}, abstract = {To manage tabular data files and leverage their content in a given downstream task, practitioners often design and execute complex transformation pipelines to prepare them. The complexity of such pipelines stems from different factors, including the nature of the preparation tasks, often exploratory or ad-hoc to specific datasets; the large repertory of tools, algorithms, and frameworks that practitioners need to master; and the volume, variety, and velocity of the files to be prepared. Metadata plays a fundamental role in reducing this complexity: characterizing a file assists end users in the design of data preprocessing pipelines, and furthermore paves the way for suggestion, automation, and optimization of data preparation tasks. Previous research in the areas of data profiling, data integration, and data cleaning, has focused on extracting and characterizing metadata regarding the content of tabular data files, i.e., about the records and attributes of tables. Content metadata are useful for the latter stages of a preprocessing pipeline, e.g., error correction, duplicate detection, or value normalization, but they require a properly formed tabular input. Therefore, these metadata are not relevant for the early stages of a preparation pipeline, i.e., to correctly parse tables out of files. In this dissertation, we turn our focus to what we call the structure of a tabular data file, i.e., the set of characters within a file that do not represent data values but are required to parse and understand the content of the file. We provide three different approaches to represent file structure, an explicit representation based on context-free grammars; an implicit representation based on file-wise similarity; and a learned representation based on machine learning. In our first contribution, we use the grammar-based representation to characterize a set of over 3000 real-world csv files and identify multiple structural issues that let files deviate from the csv standard, e.g., by having inconsistent delimiters or containing multiple tables. We leverage our learnings about real-world files and propose Pollock, a benchmark to test how well systems parse csv files that have a non-standard structure, without any previous preparation. We report on our experiments on using Pollock to evaluate the performance of 16 real-world data management systems. Following, we characterize the structure of files implicitly, by defining a measure of structural similarity for file pairs. We design a novel algorithm to compute this measure, which is based on a graph representation of the files' content. We leverage this algorithm and propose Mondrian, a graphical system to assist users in identifying layout templates in a dataset, classes of files that have the same structure, and therefore can be prepared by applying the same preparation pipeline. Finally, we introduce MaGRiTTE, a novel architecture that uses self-supervised learning to automatically learn structural representations of files in the form of vectorial embeddings at three different levels: cell level, row level, and file level. We experiment with the application of structural embeddings for several tasks, namely dialect detection, row classification, and data preparation efforts estimation. Our experimental results show that structural metadata, either identified explicitly on parsing grammars, derived implicitly as file-wise similarity, or learned with the help of machine learning architectures, is fundamental to automate several tasks, to scale up preparation to large quantities of files, and to provide repeatable preparation pipelines.}, language = {en} } @phdthesis{Halfpap2024, author = {Halfpap, Stefan}, title = {Integer linear programming-based heuristics for partially replicated database clusters and selecting indexes}, doi = {10.25932/publishup-63361}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-633615}, school = {Universit{\"a}t Potsdam}, pages = {iii, 185}, year = {2024}, abstract = {Column-oriented database systems can efficiently process transactional and analytical queries on a single node. However, increasing or peak analytical loads can quickly saturate single-node database systems. Then, a common scale-out option is using a database cluster with a single primary node for transaction processing and read-only replicas. Using (the naive) full replication, queries are distributed among nodes independently of the accessed data. This approach is relatively expensive because all nodes must store all data and apply all data modifications caused by inserts, deletes, or updates. In contrast to full replication, partial replication is a more cost-efficient implementation: Instead of duplicating all data to all replica nodes, partial replicas store only a subset of the data while being able to process a large workload share. Besides lower storage costs, partial replicas enable (i) better scaling because replicas must potentially synchronize only subsets of the data modifications and thus have more capacity for read-only queries and (ii) better elasticity because replicas have to load less data and can be set up faster. However, splitting the overall workload evenly among the replica nodes while optimizing the data allocation is a challenging assignment problem. The calculation of optimized data allocations in a partially replicated database cluster can be modeled using integer linear programming (ILP). ILP is a common approach for solving assignment problems, also in the context of database systems. Because ILP is not scalable, existing approaches (also for calculating partial allocations) often fall back to simple (e.g., greedy) heuristics for larger problem instances. Simple heuristics may work well but can lose optimization potential. In this thesis, we present optimal and ILP-based heuristic programming models for calculating data fragment allocations for partially replicated database clusters. Using ILP, we are flexible to extend our models to (i) consider data modifications and reallocations and (ii) increase the robustness of allocations to compensate for node failures and workload uncertainty. We evaluate our approaches for TPC-H, TPC-DS, and a real-world accounting workload and compare the results to state-of-the-art allocation approaches. Our evaluations show significant improvements for varied allocation's properties: Compared to existing approaches, we can, for example, (i) almost halve the amount of allocated data, (ii) improve the throughput in case of node failures and workload uncertainty while using even less memory, (iii) halve the costs of data modifications, and (iv) reallocate less than 90\% of data when adding a node to the cluster. Importantly, we can calculate the corresponding ILP-based heuristic solutions within a few seconds. Finally, we demonstrate that the ideas of our ILP-based heuristics are also applicable to the index selection problem.}, language = {en} } @phdthesis{Huegle2024, author = {Huegle, Johannes}, title = {Causal discovery in practice: Non-parametric conditional independence testing and tooling for causal discovery}, doi = {10.25932/publishup-63582}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-635820}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 156}, year = {2024}, abstract = {Knowledge about causal structures is crucial for decision support in various domains. For example, in discrete manufacturing, identifying the root causes of failures and quality deviations that interrupt the highly automated production process requires causal structural knowledge. However, in practice, root cause analysis is usually built upon individual expert knowledge about associative relationships. But, "correlation does not imply causation", and misinterpreting associations often leads to incorrect conclusions. Recent developments in methods for causal discovery from observational data have opened the opportunity for a data-driven examination. Despite its potential for data-driven decision support, omnipresent challenges impede causal discovery in real-world scenarios. In this thesis, we make a threefold contribution to improving causal discovery in practice. (1) The growing interest in causal discovery has led to a broad spectrum of methods with specific assumptions on the data and various implementations. Hence, application in practice requires careful consideration of existing methods, which becomes laborious when dealing with various parameters, assumptions, and implementations in different programming languages. Additionally, evaluation is challenging due to the lack of ground truth in practice and limited benchmark data that reflect real-world data characteristics. To address these issues, we present a platform-independent modular pipeline for causal discovery and a ground truth framework for synthetic data generation that provides comprehensive evaluation opportunities, e.g., to examine the accuracy of causal discovery methods in case of inappropriate assumptions. (2) Applying constraint-based methods for causal discovery requires selecting a conditional independence (CI) test, which is particularly challenging in mixed discrete-continuous data omnipresent in many real-world scenarios. In this context, inappropriate assumptions on the data or the commonly applied discretization of continuous variables reduce the accuracy of CI decisions, leading to incorrect causal structures. Therefore, we contribute a non-parametric CI test leveraging k-nearest neighbors methods and prove its statistical validity and power in mixed discrete-continuous data, as well as the asymptotic consistency when used in constraint-based causal discovery. An extensive evaluation of synthetic and real-world data shows that the proposed CI test outperforms state-of-the-art approaches in the accuracy of CI testing and causal discovery, particularly in settings with low sample sizes. (3) To show the applicability and opportunities of causal discovery in practice, we examine our contributions in real-world discrete manufacturing use cases. For example, we showcase how causal structural knowledge helps to understand unforeseen production downtimes or adds decision support in case of failures and quality deviations in automotive body shop assembly lines.}, language = {en} } @inproceedings{RojahnGronau2024, author = {Rojahn, Marcel and Gronau, Norbert}, title = {Openness indicators for the evaluation of digital platforms between the launch and maturity phase}, series = {Proceedings of the 57th Annual Hawaii International Conference on System Sciences}, booktitle = {Proceedings of the 57th Annual Hawaii International Conference on System Sciences}, editor = {Bui, Tung X.}, publisher = {Department of IT Management Shidler College of Business University of Hawaii}, address = {Honolulu, HI}, isbn = {978-0-99813-317-1}, pages = {4516 -- 4525}, year = {2024}, abstract = {In recent years, the evaluation of digital platforms has become an important focus in the field of information systems science. The identification of influential indicators that drive changes in digital platforms, specifically those related to openness, is still an unresolved issue. This paper addresses the challenge of identifying measurable indicators and characterizing the transition from launch to maturity in digital platforms. It proposes a systematic analytical approach to identify relevant openness indicators for evaluation purposes. The main contributions of this study are the following (1) the development of a comprehensive procedure for analyzing indicators, (2) the categorization of indicators as evaluation metrics within a multidimensional grid-box model, (3) the selection and evaluation of relevant indicators, (4) the identification and assessment of digital platform architectures during the launch-to-maturity transition, and (5) the evaluation of the applicability of the conceptualization and design process for digital platform evaluation.}, language = {en} } @inproceedings{MarxBruenkerMirbabaieetal.2024, author = {Marx, Julian and Br{\"u}nker, Felix and Mirbabaie, Milad and Stieglitz, Stefan}, title = {Digital activism on social media}, series = {Proceedings of the 57th Annual Hawaii International Conference on System Sciences}, booktitle = {Proceedings of the 57th Annual Hawaii International Conference on System Sciences}, editor = {Bui, Tung X.}, publisher = {Department of IT Management Shidler College of Business University of Hawaii}, address = {Honolulu, HI}, isbn = {978-0-99813-317-1}, pages = {7205 -- 7214}, year = {2024}, abstract = {Social media constitute an important arena for public debates and steady interchange of issues relevant to society. To boost their reputation, commercial organizations also engage in political, social, or environmental debates on social media. To engage in this type of digital activism, organizations increasingly utilize the social media profiles of executive employees and other brand ambassadors. However, the relationship between brand ambassadors' digital activism and corporate reputation is only vaguely understood. The results of a qualitative inquiry suggest that digital activism via brand ambassadors can be risky (e.g., creating additional surface for firestorms, financial loss) and rewarding (e.g., emitting authenticity, employing 'megaphones' for industry change) at the same time. The paper informs both scholarship and practitioners about strategic trade-offs that need to be considered when employing brand ambassadors for digital activism.}, language = {en} } @inproceedings{MirbabaieRieskampHofeditzetal.2024, author = {Mirbabaie, Milad and Rieskamp, Jonas and Hofeditz, Lennart and Stieglitz, Stefan}, title = {Breaking down barriers}, series = {Proceedings of the 57th Annual Hawaii International Conference on System Sciences}, booktitle = {Proceedings of the 57th Annual Hawaii International Conference on System Sciences}, editor = {Bui, Tung X.}, publisher = {Department of IT Management Shidler College of Business University of Hawaii}, address = {Honolulu, HI}, isbn = {978-0-99813-317-1}, pages = {672 -- 681}, year = {2024}, abstract = {Many researchers hesitate to provide full access to their datasets due to a lack of knowledge about research data management (RDM) tools and perceived fears, such as losing the value of one's own data. Existing tools and approaches often do not take into account these fears and missing knowledge. In this study, we examined how conversational agents (CAs) can provide a natural way of guidance through RDM processes and nudge researchers towards more data sharing. This work offers an online experiment in which researchers interacted with a CA on a self-developed RDM platform and a survey on participants' data sharing behavior. Our findings indicate that the presence of a guiding and enlightening CA on an RDM platform has a constructive influence on both the intention to share data and the actual behavior of data sharing. Notably, individual factors do not appear to impede or hinder this effect.}, language = {en} } @article{XinYingTiberiusAlnooretal.2024, author = {XinYing, Chew and Tiberius, Victor and Alnoor, Alhamzah and Camilleri, Mark and Khaw, Khai Wah}, title = {The dark side of metaverse: a multi-perspective of deviant behaviors from PLS-SEM and fsQCA findings}, series = {International journal of human-computer interaction}, journal = {International journal of human-computer interaction}, publisher = {Taylor \& Francis}, address = {London}, issn = {1044-7318}, doi = {10.1080/10447318.2024.2331875}, pages = {21}, year = {2024}, abstract = {The metaverse has created a huge buzz of interest because such a phenomenon is emerging. The behavioral aspect of the metaverse includes user engagement and deviant behaviors in the metaverse. Such technology has brought various dangers to individuals and society. There are growing cases reported of sexual abuse, racism, harassment, hate speech, and bullying because of online disinhibition make us feel more relaxed. This study responded to the literature call by investigating the effect of technical and social features through mediating roles of security and privacy on deviant behaviors in the metaverse. The data collected from virtual network users reached 1121 respondents. Partial Least Squares based structural equation modeling (PLS-SEM) and fuzzy set Qualitative Comparative Analysis (fsQCA) were used. PLS-SEM results revealed that social features such as user-to-user interaction, homophily, social ties, and social identity, and technical design such as immersive experience and invisibility significantly affect users' deviant behavior in the metaverse. The fsQCA results provided insights into the multiple causal solutions and configurations. This study is exceptional because it provided decisive results by understanding the deviant behavior of users based on the symmetrical and asymmetrical approach to virtual networks.}, language = {en} } @article{KuehlerDrathschmidtGrossmann2024, author = {K{\"u}hler, Jakob and Drathschmidt, Nicolas and Großmann, Daniela}, title = {'Modern talking'}, series = {Information polity}, volume = {29}, journal = {Information polity}, number = {2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1570-1255}, doi = {10.3233/IP-230059}, pages = {199 -- 216}, year = {2024}, abstract = {Despite growing interest, we lack a clear understanding of how the arguably ambiguous phenomenon of agile is perceived in government practice. This study aims to alleviate this puzzle by investigating how managers and employees in German public sector organisations make sense of agile as a spreading management fashion in the form of narratives. This is important because narratives function as innovation carriers that ultimately influence the manifestations of the concept in organisations. Based on a multi-case study of 31 interviews and 24 responses to a qualitative online survey conducted in 2021 and 2022, we provide insights into what public sector managers, employees and consultants understand (and, more importantly, do not understand) as agile and how they weave it into their existing reality of bureaucratic organisations. We uncover three meta-narratives of agile government, which we label 'renew', 'complement' and 'integrate'. In particular, the meta-narratives differ in their positioning of how agile interacts with the characteristics of bureaucratic organisations. Importantly, we also show that agile as a management fad serves as a projection surface for what actors want from a modern and digital organisation. Thus, the vocabulary of agile government within the narratives is inherently linked to other diffusing phenomena such as new work or digitalisation.}, language = {en} } @phdthesis{Taleb2024, author = {Taleb, Aiham}, title = {Self-supervised deep learning methods for medical image analysis}, doi = {10.25932/publishup-64408}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-644089}, school = {Universit{\"a}t Potsdam}, pages = {xii, 171}, year = {2024}, abstract = {Deep learning has seen widespread application in many domains, mainly for its ability to learn data representations from raw input data. Nevertheless, its success has so far been coupled with the availability of large annotated (labelled) datasets. This is a requirement that is difficult to fulfil in several domains, such as in medical imaging. Annotation costs form a barrier in extending deep learning to clinically-relevant use cases. The labels associated with medical images are scarce, since the generation of expert annotations of multimodal patient data at scale is non-trivial, expensive, and time-consuming. This substantiates the need for algorithms that learn from the increasing amounts of unlabeled data. Self-supervised representation learning algorithms offer a pertinent solution, as they allow solving real-world (downstream) deep learning tasks with fewer annotations. Self-supervised approaches leverage unlabeled samples to acquire generic features about different concepts, enabling annotation-efficient downstream task solving subsequently. Nevertheless, medical images present multiple unique and inherent challenges for existing self-supervised learning approaches, which we seek to address in this thesis: (i) medical images are multimodal, and their multiple modalities are heterogeneous in nature and imbalanced in quantities, e.g. MRI and CT; (ii) medical scans are multi-dimensional, often in 3D instead of 2D; (iii) disease patterns in medical scans are numerous and their incidence exhibits a long-tail distribution, so it is oftentimes essential to fuse knowledge from different data modalities, e.g. genomics or clinical data, to capture disease traits more comprehensively; (iv) Medical scans usually exhibit more uniform color density distributions, e.g. in dental X-Rays, than natural images. Our proposed self-supervised methods meet these challenges, besides significantly reducing the amounts of required annotations. We evaluate our self-supervised methods on a wide array of medical imaging applications and tasks. Our experimental results demonstrate the obtained gains in both annotation-efficiency and performance; our proposed methods outperform many approaches from related literature. Additionally, in case of fusion with genetic modalities, our methods also allow for cross-modal interpretability. In this thesis, not only we show that self-supervised learning is capable of mitigating manual annotation costs, but also our proposed solutions demonstrate how to better utilize it in the medical imaging domain. Progress in self-supervised learning has the potential to extend deep learning algorithms application to clinical scenarios.}, language = {en} } @phdthesis{Richly2024, author = {Richly, Keven}, title = {Memory-efficient data management for spatio-temporal applications}, doi = {10.25932/publishup-63547}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-635473}, school = {Universit{\"a}t Potsdam}, pages = {xii, 181}, year = {2024}, abstract = {The wide distribution of location-acquisition technologies means that large volumes of spatio-temporal data are continuously being accumulated. Positioning systems such as GPS enable the tracking of various moving objects' trajectories, which are usually represented by a chronologically ordered sequence of observed locations. The analysis of movement patterns based on detailed positional information creates opportunities for applications that can improve business decisions and processes in a broad spectrum of industries (e.g., transportation, traffic control, or medicine). Due to the large data volumes generated in these applications, the cost-efficient storage of spatio-temporal data is desirable, especially when in-memory database systems are used to achieve interactive performance requirements. To efficiently utilize the available DRAM capacities, modern database systems support various tuning possibilities to reduce the memory footprint (e.g., data compression) or increase performance (e.g., additional indexes structures). By considering horizontal data partitioning, we can independently apply different tuning options on a fine-grained level. However, the selection of cost and performance-balancing configurations is challenging, due to the vast number of possible setups consisting of mutually dependent individual decisions. In this thesis, we introduce multiple approaches to improve spatio-temporal data management by automatically optimizing diverse tuning options for the application-specific access patterns and data characteristics. Our contributions are as follows: (1) We introduce a novel approach to determine fine-grained table configurations for spatio-temporal workloads. Our linear programming (LP) approach jointly optimizes the (i) data compression, (ii) ordering, (iii) indexing, and (iv) tiering. We propose different models which address cost dependencies at different levels of accuracy to compute optimized tuning configurations for a given workload, memory budgets, and data characteristics. To yield maintainable and robust configurations, we further extend our LP-based approach to incorporate reconfiguration costs as well as optimizations for multiple potential workload scenarios. (2) To optimize the storage layout of timestamps in columnar databases, we present a heuristic approach for the workload-driven combined selection of a data layout and compression scheme. By considering attribute decomposition strategies, we are able to apply application-specific optimizations that reduce the memory footprint and improve performance. (3) We introduce an approach that leverages past trajectory data to improve the dispatch processes of transportation network companies. Based on location probabilities, we developed risk-averse dispatch strategies that reduce critical delays. (4) Finally, we used the use case of a transportation network company to evaluate our database optimizations on a real-world dataset. We demonstrate that workload-driven fine-grained optimizations allow us to reduce the memory footprint (up to 71\% by equal performance) or increase the performance (up to 90\% by equal memory size) compared to established rule-based heuristics. Individually, our contributions provide novel approaches to the current challenges in spatio-temporal data mining and database research. Combining them allows in-memory databases to store and process spatio-temporal data more cost-efficiently.}, language = {en} } @article{RojahnWeberGronau2023, author = {Rojahn, Marcel and Weber, Edzard and Gronau, Norbert}, title = {Towards a standardization in scheduling models}, series = {International journal of industrial and systems engineering}, volume = {17}, journal = {International journal of industrial and systems engineering}, number = {6}, publisher = {Inderscience Enterprises}, address = {Gen{\`e}ve}, issn = {1748-5037}, pages = {401 -- 408}, year = {2023}, abstract = {Terminology is a critical instrument for each researcher. Different terminologies for the same research object may arise in different research communities. By this inconsistency, many synergistic effects get lost. Theories and models will be more understandable and reusable if a common terminology is applied. This paper examines the terminological (in)consistence for the research field of job-shop scheduling by a literature review. There is an enormous variety in the choice of terms and mathematical notation for the same concept. The comparability, reusability and combinability of scheduling methods is unnecessarily hampered by the arbitrary use of homonyms and synonyms. The acceptance in the community of used variables and notation forms is shown by means of a compliance quotient. This is proven by the evaluation of 240 scientific publications on planning methods.}, language = {en} } @misc{RitterbuschTeichmann2023, author = {Ritterbusch, Georg David and Teichmann, Malte Rolf}, title = {Defining the metaverse}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, number = {159}, issn = {1867-5808}, doi = {10.25932/publishup-58879}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-588799}, pages = {12368 -- 12377}, year = {2023}, abstract = {The term Metaverse is emerging as a result of the late push by multinational technology conglomerates and a recent surge of interest in Web 3.0, Blockchain, NFT, and Cryptocurrencies. From a scientific point of view, there is no definite consensus on what the Metaverse will be like. This paper collects, analyzes, and synthesizes scientific definitions and the accompanying major characteristics of the Metaverse using the methodology of a Systematic Literature Review (SLR). Two revised definitions for the Metaverse are presented, both condensing the key attributes, where the first one is rather simplistic holistic describing "a three-dimensional online environment in which users represented by avatars interact with each other in virtual spaces decoupled from the real physical world". In contrast, the second definition is specified in a more detailed manner in the paper and further discussed. These comprehensive definitions offer specialized and general scholars an application within and beyond the scientific context of the system science, information system science, computer science, and business informatics, by also introducing open research challenges. Furthermore, an outlook on the social, economic, and technical implications is given, and the preconditions that are necessary for a successful implementation are discussed.}, language = {en} } @article{RitterbuschTeichmann2023, author = {Ritterbusch, Georg David and Teichmann, Malte Rolf}, title = {Defining the metaverse}, series = {IEEE Access}, volume = {11}, journal = {IEEE Access}, publisher = {Institute of Electrical and Electronics Engineers}, address = {New York, NY}, issn = {2169-3536}, doi = {10.1109/ACCESS.2023.3241809}, pages = {12368 -- 12377}, year = {2023}, abstract = {The term Metaverse is emerging as a result of the late push by multinational technology conglomerates and a recent surge of interest in Web 3.0, Blockchain, NFT, and Cryptocurrencies. From a scientific point of view, there is no definite consensus on what the Metaverse will be like. This paper collects, analyzes, and synthesizes scientific definitions and the accompanying major characteristics of the Metaverse using the methodology of a Systematic Literature Review (SLR). Two revised definitions for the Metaverse are presented, both condensing the key attributes, where the first one is rather simplistic holistic describing "a three-dimensional online environment in which users represented by avatars interact with each other in virtual spaces decoupled from the real physical world". In contrast, the second definition is specified in a more detailed manner in the paper and further discussed. These comprehensive definitions offer specialized and general scholars an application within and beyond the scientific context of the system science, information system science, computer science, and business informatics, by also introducing open research challenges. Furthermore, an outlook on the social, economic, and technical implications is given, and the preconditions that are necessary for a successful implementation are discussed.}, language = {en} } @phdthesis{Bano2023, author = {Bano, Dorina}, title = {Discovering data models from event logs}, doi = {10.25932/publishup-58542}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585427}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 137}, year = {2023}, abstract = {In the last two decades, process mining has developed from a niche discipline to a significant research area with considerable impact on academia and industry. Process mining enables organisations to identify the running business processes from historical execution data. The first requirement of any process mining technique is an event log, an artifact that represents concrete business process executions in the form of sequence of events. These logs can be extracted from the organization's information systems and are used by process experts to retrieve deep insights from the organization's running processes. Considering the events pertaining to such logs, the process models can be automatically discovered and enhanced or annotated with performance-related information. Besides behavioral information, event logs contain domain specific data, albeit implicitly. However, such data are usually overlooked and, thus, not utilized to their full potential. Within the process mining area, we address in this thesis the research gap of discovering, from event logs, the contextual information that cannot be captured by applying existing process mining techniques. Within this research gap, we identify four key problems and tackle them by looking at an event log from different angles. First, we address the problem of deriving an event log in the absence of a proper database access and domain knowledge. The second problem is related to the under-utilization of the implicit domain knowledge present in an event log that can increase the understandability of the discovered process model. Next, there is a lack of a holistic representation of the historical data manipulation at the process model level of abstraction. Last but not least, each process model presumes to be independent of other process models when discovered from an event log, thus, ignoring possible data dependencies between processes within an organization. For each of the problems mentioned above, this thesis proposes a dedicated method. The first method provides a solution to extract an event log only from the transactions performed on the database that are stored in the form of redo logs. The second method deals with discovering the underlying data model that is implicitly embedded in the event log, thus, complementing the discovered process model with important domain knowledge information. The third method captures, on the process model level, how the data affects the running process instances. Lastly, the fourth method is about the discovery of the relations between business processes (i.e., how they exchange data) from a set of event logs and explicitly representing such complex interdependencies in a business process architecture. All the methods introduced in this thesis are implemented as a prototype and their feasibility is proven by being applied on real-life event logs.}, language = {en} } @incollection{RojahnAmbrosBiruetal.2023, author = {Rojahn, Marcel and Ambros, Maximilian and Biru, Tibebu and Krallmann, Hermann and Gronau, Norbert and Grum, Marcus}, title = {Adequate basis for the data-driven and machine-learning-based identification}, series = {Artificial intelligence and soft computing}, booktitle = {Artificial intelligence and soft computing}, editor = {Rutkowski, Leszek and Scherer, Rafał and Korytkowski, Marcin and Pedrycz, Witold and Tadeusiewicz, Ryszard and Zurada, Jacek M.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-42504-2}, doi = {10.1007/978-3-031-42505-9_48}, pages = {570 -- 588}, year = {2023}, abstract = {Process mining (PM) has established itself in recent years as a main method for visualizing and analyzing processes. However, the identification of knowledge has not been addressed adequately because PM aims solely at data-driven discovering, monitoring, and improving real-world processes from event logs available in various information systems. The following paper, therefore, outlines a novel systematic analysis view on tools for data-driven and machine learning (ML)-based identification of knowledge-intensive target processes. To support the effectiveness of the identification process, the main contributions of this study are (1) to design a procedure for a systematic review and analysis for the selection of relevant dimensions, (2) to identify different categories of dimensions as evaluation metrics to select source systems, algorithms, and tools for PM and ML as well as include them in a multi-dimensional grid box model, (3) to select and assess the most relevant dimensions of the model, (4) to identify and assess source systems, algorithms, and tools in order to find evidence for the selected dimensions, and (5) to assess the relevance and applicability of the conceptualization and design procedure for tool selection in data-driven and ML-based process mining research.}, language = {en} } @phdthesis{Sakizloglou2023, author = {Sakizloglou, Lucas}, title = {Evaluating temporal queries over history-aware architectural runtime models}, doi = {10.25932/publishup-60439}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604396}, school = {Universit{\"a}t Potsdam}, pages = {v, 168}, year = {2023}, abstract = {In model-driven engineering, the adaptation of large software systems with dynamic structure is enabled by architectural runtime models. Such a model represents an abstract state of the system as a graph of interacting components. Every relevant change in the system is mirrored in the model and triggers an evaluation of model queries, which search the model for structural patterns that should be adapted. This thesis focuses on a type of runtime models where the expressiveness of the model and model queries is extended to capture past changes and their timing. These history-aware models and temporal queries enable more informed decision-making during adaptation, as they support the formulation of requirements on the evolution of the pattern that should be adapted. However, evaluating temporal queries during adaptation poses significant challenges. First, it implies the capability to specify and evaluate requirements on the structure, as well as the ordering and timing in which structural changes occur. Then, query answers have to reflect that the history-aware model represents the architecture of a system whose execution may be ongoing, and thus answers may depend on future changes. Finally, query evaluation needs to be adequately fast and memory-efficient despite the increasing size of the history---especially for models that are altered by numerous, rapid changes. The thesis presents a query language and a querying approach for the specification and evaluation of temporal queries. These contributions aim to cope with the challenges of evaluating temporal queries at runtime, a prerequisite for history-aware architectural monitoring and adaptation which has not been systematically treated by prior model-based solutions. The distinguishing features of our contributions are: the specification of queries based on a temporal logic which encodes structural patterns as graphs; the provision of formally precise query answers which account for timing constraints and ongoing executions; the incremental evaluation which avoids the re-computation of query answers after each change; and the option to discard history that is no longer relevant to queries. The query evaluation searches the model for occurrences of a pattern whose evolution satisfies a temporal logic formula. Therefore, besides model-driven engineering, another related research community is runtime verification. The approach differs from prior logic-based runtime verification solutions by supporting the representation and querying of structure via graphs and graph queries, respectively, which is more efficient for queries with complex patterns. We present a prototypical implementation of the approach and measure its speed and memory consumption in monitoring and adaptation scenarios from two application domains, with executions of an increasing size. We assess scalability by a comparison to the state-of-the-art from both related research communities. The implementation yields promising results, which pave the way for sophisticated history-aware self-adaptation solutions and indicate that the approach constitutes a highly effective technique for runtime monitoring on an architectural level.}, language = {en} } @phdthesis{Lindinger2023, author = {Lindinger, Jakob}, title = {Variational inference for composite Gaussian process models}, doi = {10.25932/publishup-60444}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604441}, school = {Universit{\"a}t Potsdam}, pages = {xi, 122}, year = {2023}, abstract = {Most machine learning methods provide only point estimates when being queried to predict on new data. This is problematic when the data is corrupted by noise, e.g. from imperfect measurements, or when the queried data point is very different to the data that the machine learning model has been trained with. Probabilistic modelling in machine learning naturally equips predictions with corresponding uncertainty estimates which allows a practitioner to incorporate information about measurement noise into the modelling process and to know when not to trust the predictions. A well-understood, flexible probabilistic framework is provided by Gaussian processes that are ideal as building blocks of probabilistic models. They lend themself naturally to the problem of regression, i.e., being given a set of inputs and corresponding observations and then predicting likely observations for new unseen inputs, and can also be adapted to many more machine learning tasks. However, exactly inferring the optimal parameters of such a Gaussian process model (in a computationally tractable manner) is only possible for regression tasks in small data regimes. Otherwise, approximate inference methods are needed, the most prominent of which is variational inference. In this dissertation we study models that are composed of Gaussian processes embedded in other models in order to make those more flexible and/or probabilistic. The first example are deep Gaussian processes which can be thought of as a small network of Gaussian processes and which can be employed for flexible regression. The second model class that we study are Gaussian process state-space models. These can be used for time-series modelling, i.e., the task of being given a stream of data ordered by time and then predicting future observations. For both model classes the state-of-the-art approaches offer a trade-off between expressive models and computational properties (e.g. speed or convergence properties) and mostly employ variational inference. Our goal is to improve inference in both models by first getting a deep understanding of the existing methods and then, based on this, to design better inference methods. We achieve this by either exploring the existing trade-offs or by providing general improvements applicable to multiple methods. We first provide an extensive background, introducing Gaussian processes and their sparse (approximate and efficient) variants. We continue with a description of the models under consideration in this thesis, deep Gaussian processes and Gaussian process state-space models, including detailed derivations and a theoretical comparison of existing methods. Then we start analysing deep Gaussian processes more closely: Trading off the properties (good optimisation versus expressivity) of state-of-the-art methods in this field, we propose a new variational inference based approach. We then demonstrate experimentally that our new algorithm leads to better calibrated uncertainty estimates than existing methods. Next, we turn our attention to Gaussian process state-space models, where we closely analyse the theoretical properties of existing methods.The understanding gained in this process leads us to propose a new inference scheme for general Gaussian process state-space models that incorporates effects on multiple time scales. This method is more efficient than previous approaches for long timeseries and outperforms its comparison partners on data sets in which effects on multiple time scales (fast and slowly varying dynamics) are present. Finally, we propose a new inference approach for Gaussian process state-space models that trades off the properties of state-of-the-art methods in this field. By combining variational inference with another approximate inference method, the Laplace approximation, we design an efficient algorithm that outperforms its comparison partners since it achieves better calibrated uncertainties.}, language = {en} } @phdthesis{Discher2023, author = {Discher, S{\"o}ren}, title = {Real-Time Rendering Techniques for Massive 3D Point Clouds}, doi = {10.25932/publishup-60164}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-601641}, school = {Universit{\"a}t Potsdam}, pages = {ix, 123}, year = {2023}, abstract = {Today, point clouds are among the most important categories of spatial data, as they constitute digital 3D models of the as-is reality that can be created at unprecedented speed and precision. However, their unique properties, i.e., lack of structure, order, or connectivity information, necessitate specialized data structures and algorithms to leverage their full precision. In particular, this holds true for the interactive visualization of point clouds, which requires to balance hardware limitations regarding GPU memory and bandwidth against a naturally high susceptibility to visual artifacts. This thesis focuses on concepts, techniques, and implementations of robust, scalable, and portable 3D visualization systems for massive point clouds. To that end, a number of rendering, visualization, and interaction techniques are introduced, that extend several basic strategies to decouple rendering efforts and data management: First, a novel visualization technique that facilitates context-aware filtering, highlighting, and interaction within point cloud depictions. Second, hardware-specific optimization techniques that improve rendering performance and image quality in an increasingly diversified hardware landscape. Third, natural and artificial locomotion techniques for nausea-free exploration in the context of state-of-the-art virtual reality devices. Fourth, a framework for web-based rendering that enables collaborative exploration of point clouds across device ecosystems and facilitates the integration into established workflows and software systems. In cooperation with partners from industry and academia, the practicability and robustness of the presented techniques are showcased via several case studies using representative application scenarios and point cloud data sets. In summary, the work shows that the interactive visualization of point clouds can be implemented by a multi-tier software architecture with a number of domain-independent, generic system components that rely on optimization strategies specific to large point clouds. It demonstrates the feasibility of interactive, scalable point cloud visualization as a key component for distributed IT solutions that operate with spatial digital twins, providing arguments in favor of using point clouds as a universal type of spatial base data usable directly for visualization purposes.}, language = {en} } @phdthesis{Kossmann2023, author = {Koßmann, Jan}, title = {Unsupervised database optimization}, doi = {10.25932/publishup-58949}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-589490}, school = {Universit{\"a}t Potsdam}, pages = {xi, 203}, year = {2023}, abstract = {The amount of data stored in databases and the complexity of database workloads are ever- increasing. Database management systems (DBMSs) offer many configuration options, such as index creation or unique constraints, which must be adapted to the specific instance to efficiently process large volumes of data. Currently, such database optimization is complicated, manual work performed by highly skilled database administrators (DBAs). In cloud scenarios, manual database optimization even becomes infeasible: it exceeds the abilities of the best DBAs due to the enormous number of deployed DBMS instances (some providers maintain millions of instances), missing domain knowledge resulting from data privacy requirements, and the complexity of the configuration tasks. Therefore, we investigate how to automate the configuration of DBMSs efficiently with the help of unsupervised database optimization. While there are numerous configuration options, in this thesis, we focus on automatic index selection and the use of data dependencies, such as functional dependencies, for query optimization. Both aspects have an extensive performance impact and complement each other by approaching unsupervised database optimization from different perspectives. Our contributions are as follows: (1) we survey automated state-of-the-art index selection algorithms regarding various criteria, e.g., their support for index interaction. We contribute an extensible platform for evaluating the performance of such algorithms with industry-standard datasets and workloads. The platform is well-received by the community and has led to follow-up research. With our platform, we derive the strengths and weaknesses of the investigated algorithms. We conclude that existing solutions often have scalability issues and cannot quickly determine (near-)optimal solutions for large problem instances. (2) To overcome these limitations, we present two new algorithms. Extend determines (near-)optimal solutions with an iterative heuristic. It identifies the best index configurations for the evaluated benchmarks. Its selection runtimes are up to 10 times lower compared with other near-optimal approaches. SWIRL is based on reinforcement learning and delivers solutions instantly. These solutions perform within 3 \% of the optimal ones. Extend and SWIRL are available as open-source implementations. (3) Our index selection efforts are complemented by a mechanism that analyzes workloads to determine data dependencies for query optimization in an unsupervised fashion. We describe and classify 58 query optimization techniques based on functional, order, and inclusion dependencies as well as on unique column combinations. The unsupervised mechanism and three optimization techniques are implemented in our open-source research DBMS Hyrise. Our approach reduces the Join Order Benchmark's runtime by 26 \% and accelerates some TPC-DS queries by up to 58 times. Additionally, we have developed a cockpit for unsupervised database optimization that allows interactive experiments to build confidence in such automated techniques. In summary, our contributions improve the performance of DBMSs, support DBAs in their work, and enable them to contribute their time to other, less arduous tasks.}, language = {en} } @masterthesis{Repp2023, type = {Bachelor Thesis}, author = {Repp, Leo}, title = {Extending the automatic theorem prover nanoCoP with arithmetic procedures}, doi = {10.25932/publishup-57619}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-576195}, school = {Universit{\"a}t Potsdam}, pages = {52}, year = {2023}, abstract = {In dieser Bachelorarbeit implementiere ich den automatischen Theorembeweiser nanoCoP-Ω. Es handelt sich bei diesem neuen System um das Ergebnis einer Portierung von Arithmetik-behandelnden Prozeduren aus dem automatischen Theorembeweiser mit Arithmetik leanCoP-Ω in das System nanoCoP 2.0. Dazu wird zuerst der mathematische Hintergrund zu automatischen Theorembeweisern und Arithmetik gegeben. Ich stelle die Vorg{\"a}ngerprojekte leanCoP, nanoCoP und leanCoP-Ω vor, auf dessen Vorlage nanoCoP-Ω entwickelt wurde. Es folgt eine ausf{\"u}hrliche Erkl{\"a}rung der Konzepte, um welche der nicht-klausale Konnektionskalk{\"u}l erweitert werden muss, um eine Behandlung von arithmetischen Ausdr{\"u}cken und Gleichheiten in den Kalk{\"u}l zu integrieren, sowie eine Beschreibung der Implementierung dieser Konzepte in nanoCoP-Ω. Als letztes folgt eine experimentelle Evaluation von nanoCoP-Ω. Es wurde ein ausf{\"u}hrlicher Vergleich von Laufzeit und Anzahl gel{\"o}ster Probleme im Vergleich zum {\"a}hnlich aufgebauten Theorembeweiser leanCoP-Ω auf Basis der TPTP-Benchmark durchgef{\"u}hrt. Ich komme zu dem Ergebnis, dass nanoCoP-Ω deutlich schneller ist als leanCoP-Ω ist, jedoch weniger gut geeignet f{\"u}r gr{\"o}ßere Probleme. Zudem konnte ich feststellen, dass nanoCoP-Ω falsche Beweise liefern kann. Ich bespreche, wie dieses Problem gel{\"o}st werden kann, sowie einige m{\"o}gliche Optimierungen und Erweiterungen des Beweissystems.}, language = {en} }