@unpublished{AlsaedyTarkhanov2012, author = {Alsaedy, Ammar and Tarkhanov, Nikolai Nikolaevich}, title = {The method of Fischer-Riesz equations for elliptic boundary value problems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61792}, year = {2012}, abstract = {We develop the method of Fischer-Riesz equations for general boundary value problems elliptic in the sense of Douglis-Nirenberg. To this end we reduce them to a boundary problem for a (possibly overdetermined) first order system whose classical symbol has a left inverse. For such a problem there is a uniquely determined boundary value problem which is adjoint to the given one with respect to the Green formula. On using a well elaborated theory of approximation by solutions of the adjoint problem, we find the Cauchy data of solutions of our problem.}, language = {en} } @unpublished{AlsaedyTarkhanov2016, author = {Alsaedy, Ammar and Tarkhanov, Nikolai Nikolaevich}, title = {A Hilbert boundary value problem for generalised Cauchy-Riemann equations}, volume = {5}, number = {1}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86109}, pages = {21}, year = {2016}, abstract = {We elaborate a boundary Fourier method for studying an analogue of the Hilbert problem for analytic functions within the framework of generalised Cauchy-Riemann equations. The boundary value problem need not satisfy the Shapiro-Lopatinskij condition and so it fails to be Fredholm in Sobolev spaces. We show a solvability condition of the Hilbert problem, which looks like those for ill-posed problems, and construct an explicit formula for approximate solutions.}, language = {en} } @unpublished{PolkovnikovTarkhanov2017, author = {Polkovnikov, Alexander and Tarkhanov, Nikolai Nikolaevich}, title = {A Riemann-Hilbert problem for the Moisil-Teodorescu system}, volume = {6}, number = {3}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397036}, pages = {31}, year = {2017}, abstract = {In a bounded domain with smooth boundary in R^3 we consider the stationary Maxwell equations for a function u with values in R^3 subject to a nonhomogeneous condition (u,v)_x = u_0 on the boundary, where v is a given vector field and u_0 a function on the boundary. We specify this problem within the framework of the Riemann-Hilbert boundary value problems for the Moisil-Teodorescu system. This latter is proved to satisfy the Shapiro-Lopaniskij condition if an only if the vector v is at no point tangent to the boundary. The Riemann-Hilbert problem for the Moisil-Teodorescu system fails to possess an adjoint boundary value problem with respect to the Green formula, which satisfies the Shapiro-Lopatinskij condition. We develop the construction of Green formula to get a proper concept of adjoint boundary value problem.}, language = {en} }