@phdthesis{Spooner2021, author = {Spooner, Cameron}, title = {How does lithospheric configuration relate to deformation in the Alpine region?}, doi = {10.25932/publishup-51644}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516442}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 138}, year = {2021}, abstract = {Forming as a result of the collision between the Adriatic and European plates, the Alpine orogen exhibits significant lithospheric heterogeneity due to the long history of interplay between these plates, other continental and oceanic blocks in the region, and inherited features from preceeding orogenies. This implies that the thermal and rheological configuration of the lithosphere also varies significantly throughout the region. Lithology and temperature/pressure conditions exert a first order control on rock strength, principally via thermally activated creep deformation and on the distribution at depth of the brittle-ductile transition zone, which can be regarded as the lower bound to the seismogenic zone. Therefore, they influence the spatial distribution of seismicity within a lithospheric plate. In light of this, accurately constrained geophysical models of the heterogeneous Alpine lithospheric configuration, are crucial in describing regional deformation patterns. However, despite the amount of research focussing on the area, different hypotheses still exist regarding the present-day lithospheric state and how it might relate to the present-day seismicity distribution. This dissertaion seeks to constrain the Alpine lithospheric configuration through a fully 3D integrated modelling workflow, that utilises multiple geophysical techniques and integrates from all available data sources. The aim is therefore to shed light on how lithospheric heterogeneity may play a role in influencing the heterogeneous patterns of seismicity distribution observed within the region. This was accomplished through the generation of: (i) 3D seismically constrained, structural and density models of the lithosphere, that were adjusted to match the observed gravity field; (ii) 3D models of the lithospheric steady state thermal field, that were adjusted to match observed wellbore temperatures; and (iii) 3D rheological models of long term lithospheric strength, with the results of each step used as input for the following steps. Results indicate that the highest strength within the crust (~ 1 GPa) and upper mantle (> 2 GPa), are shown to occur at temperatures characteristic for specific phase transitions (more felsic crust: 200 - 400 °C; more mafic crust and upper lithospheric mantle: ~600 °C) with almost all seismicity occurring in these regions. However, inherited lithospheric heterogeneity was found to significantly influence this, with seismicity in the thinner and more mafic Adriatic crust (~22.5 km, 2800 kg m-3, 1.30E-06 W m-3) occuring to higher temperatures (~600 °C) than in the thicker and more felsic European crust (~27.5 km, 2750 kg m-3, 1.3-2.6E-06 W m-3, ~450 °C). Correlation between seismicity in the orogen forelands and lithospheric strength, also show different trends, reflecting their different tectonic settings. As such, events in the plate boundary setting of the southern foreland correlate with the integrated lithospheric strength, occurring mainly in the weaker lithosphere surrounding the strong Adriatic indenter. Events in the intraplate setting of the northern foreland, instead correlate with crustal strength, mainly occurring in the weaker and warmer crust beneath the Upper Rhine Graben. Therefore, not only do the findings presented in this work represent a state of the art understanding of the lithospheric configuration beneath the Alps and their forelands, but also a significant improvement on the features known to significantly influence the occurrence of seismicity within the region. This highlights the importance of considering lithospheric state in regards to explaining observed patterns of deformation.}, language = {en} } @phdthesis{RodriguezPiceda2022, author = {Rodriguez Piceda, Constanza}, title = {Thermomechanical state of the southern Central Andes}, doi = {10.25932/publishup-54927}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549275}, school = {Universit{\"a}t Potsdam}, pages = {xx, 228}, year = {2022}, abstract = {The Andes are a ~7000 km long N-S trending mountain range developed along the South American western continental margin. Driven by the subduction of the oceanic Nazca plate beneath the continental South American plate, the formation of the northern and central parts of the orogen is a type case for a non-collisional orogeny. In the southern Central Andes (SCA, 29°S-39°S), the oceanic plate changes the subduction angle between 33°S and 35°S from almost horizontal (< 5° dip) in the north to a steeper angle (~30° dip) in the south. This sector of the Andes also displays remarkable along- and across- strike variations of the tectonic deformation patterns. These include a systematic decrease of topographic elevation, of crustal shortening and foreland and orogenic width, as well as an alternation of the foreland deformation style between thick-skinned and thin-skinned recorded along- and across the strike of the subduction zone. Moreover, the SCA are a very seismically active region. The continental plate is characterized by a relatively shallow seismicity (< 30 km depth) which is mainly focussed at the transition from the orogen to the lowland areas of the foreland and the forearc; in contrast, deeper seismicity occurs below the interiors of the northern foreland. Additionally, frequent seismicity is also recorded in the shallow parts of the oceanic plate and in a sector of the flat slab segment between 31°S and 33°S. The observed spatial heterogeneity in tectonic and seismic deformation in the SCA has been attributed to multiple causes, including variations in sediment thickness, the presence of inherited structures and changes in the subduction angle of the oceanic slab. However, there is no study that inquired the relationship between the long-term rheological configuration of the SCA and the spatial deformation patterns. Moreover, the effects of the density and thickness configuration of the continental plate and of variations in the slab dip angle in the rheological state of the lithosphere have been not thoroughly investigated yet. Since rheology depends on composition, pressure and temperature, a detailed characterization of the compositional, structural and thermal fields of the lithosphere is needed. Therefore, by using multiple geophysical approaches and data sources, I constructed the following 3D models of the SCA lithosphere: (i) a seismically-constrained structural and density model that was tested against the gravity field; (ii) a thermal model integrating the conversion of mantle shear-wave velocities to temperature with steady-state conductive calculations in the uppermost lithosphere (< 50 km depth), validated by temperature and heat-flow measurements; and (iii) a rheological model of the long-term lithospheric strength using as input the previously-generated models. The results of this dissertation indicate that the present-day thermal and rheological fields of the SCA are controlled by different mechanisms at different depths. At shallow depths (< 50 km), the thermomechanical field is modulated by the heterogeneous composition of the continental lithosphere. The overprint of the oceanic slab is detectable where the oceanic plate is shallow (< 85 km depth) and the radiogenic crust is thin, resulting in overall lower temperatures and higher strength compared to regions where the slab is steep and the radiogenic crust is thick. At depths > 50 km, largest temperatures variations occur where the descending slab is detected, which implies that the deep thermal field is mainly affected by the slab dip geometry. The outcomes of this thesis suggests that long-term thermomechanical state of the lithosphere influences the spatial distribution of seismic deformation. Most of the seismicity within the continental plate occurs above the modelled transition from brittle to ductile conditions. Additionally, there is a spatial correlation between the location of these events and the transition from the mechanically strong domains of the forearc and foreland to the weak domain of the orogen. In contrast, seismicity within the oceanic plate is also detected where long-term ductile conditions are expected. I therefore analysed the possible influence of additional mechanisms triggering these earthquakes, including the compaction of sediments in the subduction interface and dehydration reactions in the slab. To that aim, I carried out a qualitative analysis of the state of hydration in the mantle using the ratio between compressional- and shear-wave velocity (vp/vs ratio) from a previous seismic tomography. The results from this analysis indicate that the majority of the seismicity spatially correlates with hydrated areas of the slab and overlying continental mantle, with the exception of the cluster within the flat slab segment. In this region, earthquakes are likely triggered by flexural processes where the slab changes from a flat to a steep subduction angle. First-order variations in the observed tectonic patterns also seem to be influenced by the thermomechanical configuration of the lithosphere. The mechanically strong domains of the forearc and foreland, due to their resistance to deformation, display smaller amounts of shortening than the relatively weak orogenic domain. In addition, the structural and thermomechanical characteristics modelled in this dissertation confirm previous analyses from geodynamic models pointing to the control of the observed heterogeneities in the orogen and foreland deformation style. These characteristics include the lithospheric and crustal thickness, the presence of weak sediments and the variations in gravitational potential energy. Specific conditions occur in the cold and strong northern foreland, which is characterized by active seismicity and thick-skinned structures, although the modelled crustal strength exceeds the typical values of externally-applied tectonic stresses. The additional mechanisms that could explain the strain localization in a region that should resist deformation are: (i) increased tectonic forces coming from the steepening of the slab and (ii) enhanced weakening along inherited structures from pre-Andean deformation events. Finally, the thermomechanical conditions of this sector of the foreland could be a key factor influencing the preservation of the flat subduction angle at these latitudes of the SCA.}, language = {en} }