@phdthesis{RuizMonroy2021, author = {Ruiz-Monroy, Ricardo}, title = {Organic geochemical characterization of the Yacoraite Formation (NW-Argentina)-paleoenvironment and petroleum potential}, doi = {10.25932/publishup-51869}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-518697}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 161}, year = {2021}, abstract = {This dissertation was carried out as part of the international and interdisciplinary graduate school StRATEGy. This group has set itself the goal of investigating geological processes that take place on different temporal and spatial scales and have shaped the southern central Andes. This study focuses on claystones and carbonates of the Yacoraite Fm. that were deposited between Maastricht and Dan in the Cretaceous Salta Rift Basin. The former rift basin is located in northwest Argentina and is divided into the sub-basins Tres Cruces, Met{\´a}n-Aleman{\´i}a and Lomas de Olmedo. The overall motivation for this study was to gain new knowledge about the evolution of marine and lacustrine conditions during the Yacoraite Fm. Deposit in the Tres Cruces and Met{\´a}n-Aleman{\´i}a sub-basins. Other important aspects that were examined within the scope of this dissertation are the conversion of organic matter from Yacoraite Fm. into oil and its genetic relationship to selected oils produced and natural oil spills. The results of my study show that the Yacoraite Fm. began to be deposited under marine conditions and that a lacustrine environment developed by the end of the deposition in the Tres Cruces and Met{\´a}n-Aleman{\´i}a Basins. In general, the kerogen of Yacoraite Fm. consists mainly of the kerogen types II, III and II / III mixtures. Kerogen type III is mainly found in samples from the Yacoraite Fm., whose TOC values are low. Due to the adsorption of hydrocarbons on the mineral surfaces (mineral matrix effect), the content of type III kerogen with Rock-Eval pyrolysis in these samples could be overestimated. Investigations using organic petrography show that the organic particles of Yacoraite Fm. mainly consist of alginites and some vitrinite-like particles. The pyrolysis GC of the rock samples showed that the Yacoraite Fm. generates low-sulfur oils with a predominantly low-wax, paraffinic-naphthenic-aromatic composition and paraffinic wax-rich oils. Small proportions of paraffinic, low-wax oils and a gas condensate-generating facies are also predicted. Here, too, mineral matrix effects were taken into account, which can lead to a quantitative overestimation of the gas-forming character. The results of an additional 1D tank modeling carried out show that the beginning (10\% TR) of the oil genesis took place between ≈10 Ma and ≈4 Ma. Most of the oil (from ≈50\% to 65\%) was generated prior to the development of structural traps formed during the Plio-Pleistocene Diaguita deformation phase. Only ≈10\% of the total oil generated was formed and potentially trapped after the formation of structural traps. Important factors in the risk assessment of this petroleum system, which can determine the small amounts of generated and migrated oil, are the generally low TOC contents and the variable thickness of the Yacoraite Fm. Additional risks are associated with a low density of information about potentially existing reservoir structures and the quality of the overburden.}, language = {en} }