@phdthesis{Dambowsky2021, author = {Dambowsky, Ina}, title = {Bioinspirierte Komposite - Strukturbildung durch Verkleben von Nano- oder Mesokristallen mit funktionalisierten Poly(2-oxazolin)en}, doi = {10.25932/publishup-52367}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523671}, school = {Universit{\"a}t Potsdam}, pages = {XII, 220}, year = {2021}, abstract = {Die herausragenden mechanischen Eigenschaften nat{\"u}rlicher anorganisch-organischer Kompositmaterialien wie Knochen oder Muschelschalen entspringen ihrer hierarchischen Struktur, die von der nano- bis hinauf zur makroskopischen Ebene reicht, und einer kontrollierten Verbindung entlang der Grenzfl{\"a}chen der anorganischen und organischen Komponenten. Ausgehend von diesen Schl{\"u}sselprinzipien des biologischen Materialdesigns wurden in dieser Arbeit zwei Konzepte f{\"u}r die bioinspirierte Strukturbildung von Kompositen untersucht, die auf dem Verkleben von Nano- oder Mesokristallen mit funktionalisierten Poly(2-oxazolin)-Blockcopolymeren beruhen sowie deren Potenzial zur Herstellung bioinspirierter selbstorganisierter hierarchischer anorganisch-organischer Verbundstrukturen ohne {\"a}ußere Kr{\"a}fte beleuchtet. Die Konzepte unterschieden sich in den verwendeten anorganischen Partikeln und in der Art der Strukturbildung. {\"U}ber einen modularen Ansatz aus Polymersynthese und polymeranaloger Thiol-En-Funktionalisierung wurde erfolgreich eine Bibliothek von Poly(2-oxazolin)en mit unterschiedlichen Funktionalit{\"a}ten erstellt. Die Blockcopolymere bestehen aus einem kurzen partikelaffinen "Klebeblock", der aus Thiol-En-funktionalisiertem Poly(2-(3-butenyl)-2-oxazolin) besteht, und einem langen wasserl{\"o}slichen, strukturbildenden Block, der aus thermoresponsivem und kristallisierbarem Poly(2-isopropyl-2-oxazolin) besteht und hierarchische Morphologien ausbildet. Verschiedene analytische Untersuchungen wie Turbidimetrie, DLS, DSC, SEM oder XRD machten das thermoresponsive bzw. das Kristallisationsverhalten der Blockcopolymere in Abh{\"a}ngigkeit vom eingef{\"u}hrten Klebeblock zug{\"a}nglich. Es zeigte sich, dass diese Polymere ein komplexes temperatur- und pH-abh{\"a}ngiges Tr{\"u}bungsverhalten aufweisen. Hinsichtlich der Kristallisation {\"a}nderte der Klebeblock nicht die nanoskopische Kristallstruktur; er beeinflusste jedoch die Kristallisationszeit, den Kristallisationsgrad und die hierarchische Morphologie. Dieses Ergebnis wurde auf das unterschiedliche Aggregationsverhalten der Polymere in Wasser zur{\"u}ckgef{\"u}hrt. F{\"u}r die Herstellung von Kompositen nutzte Konzept 1 mikrometergroße Kupferoxalat-Mesokristalle, die eine innere Nanostruktur aufweisen. Die Strukturbildung {\"u}ber den anorganischen Teil wurde durch das Verkleben und Anordnen dieser Partikel erstrebt. Konzept 1 erm{\"o}glichte homogene freistehende stabile Kompositfilme mit einem hohen anorganischen Anteil. Die Partikel-Polymer-Kombination vereinte jedoch ung{\"u}nstige Eigenschaften in sich, d. h. ihre L{\"a}ngenskalen waren zu unterschiedlich, was die Selbstassemblierung der Partikel verhinderte. Aufgrund des geringen Aspektverh{\"a}ltnisses von Kupferoxalat blieb auch die gegenseitige Ausrichtung durch {\"a}ußere Kr{\"a}fte erfolglos. Im Ergebnis eignet sich das Kupferoxalat-Poly(2-oxazolin)-Modellsystem nicht f{\"u}r die Herstellung hierarchischer Kompositstrukturen. Im Gegensatz dazu verwendet Konzept 2 scheibenf{\"o}rmige Laponit®-Nanopartikel und kristallisierbare Blockcopolymere zur Strukturbildung {\"u}ber die organische Komponente durch polymervermittelte Selbstassemblierung. Komplement{\"a}re Analysemethoden (Zeta-Potenzial, DLS, SEM, XRD, DSC, TEM) zeigten sowohl eine kontrollierte Wechselwirkung zwischen den Komponenten in w{\"a}ssriger Umgebung als auch eine kontrollierte Strukturbildung, die in selbstassemblierten Nanokompositen resultiert, deren Struktur sich {\"u}ber mehrere L{\"a}ngenskalen erstreckt. Es wurde gezeigt, dass die negativ geladenen Klebebl{\"o}cke spezifisch und selektiv an den positiv geladenen R{\"a}ndern der Laponit®-Partikel binden und so Polymer-Laponit®-Nanohybridpartikel entstehen, die als Grundbausteine f{\"u}r die Kompositbildung dienen. Die Hybridpartikel sind bei Raumtemperatur elektrosterisch stabilisiert - sterisch durch ihre langen, mit Wasser wechselwirkenden Poly(2-isopropyl-2-oxazolin)-Bl{\"o}cke und elektrostatisch {\"u}ber die negativ geladenen Laponit®-Fl{\"a}chen. Im Ergebnis ließ sich Konzept 2 und damit die Strukturbildung {\"u}ber die organische Komponente erfolgreich umsetzten. Das Laponit®-Poly(2-oxazolin)-Modellsystem er{\"o}ffnete den Weg zu selbstassemblierten geschichteten quasi-hierarchischen Nanokompositstrukturen mit hohem anorganischen Anteil. Abh{\"a}ngig von der frei verf{\"u}gbaren Polymerkonzentration bei der Kompositbildung entstanden zwei unterschiedliche Komposit-Typen. Dar{\"u}ber hinaus entwarf die Arbeit einen Erkl{\"a}rungsansatz f{\"u}r den polymervermittelten Bildungsprozess der Komposit-Strukturen. Insgesamt legt diese Arbeit Struktur-Prozess-Eigenschafts-Beziehungen offen, um selbstassemblierte bioinspirierte Kompositstrukturen zu bilden und liefert neue Einsichten zu einer geeigneten Kombination an Komponenten und Herstellungsbedingungen, die eine kontrollierte selbstassemblierte Strukturbildung mithilfe funktionalisierter Poly(2-oxazolin)-Blockcopolymere erlauben.}, language = {de} } @phdthesis{Henschel2023, author = {Henschel, Cristiane}, title = {Thermoresponsive polymers with co-nonsolvency behavior}, doi = {10.25932/publishup-57716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577161}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 260}, year = {2023}, abstract = {Despite the popularity of thermoresponsive polymers, much is still unknown about their behavior, how it is triggered, and what factors influence it, hindering the full exploitation of their potential. One particularly puzzling phenomenon is called co-nonsolvency, in which a polymer is soluble in two individual solvents, but counter-intuitively becomes insoluble in mixtures of both. Despite the innumerous potential applications of such systems, including actuators, viscosity regulators and as carrier structures, this field has not yet been extensively studied apart from the classical example of poly(N isopropyl acrylamide) (PNIPAM) in mixtures of water and methanol. Therefore, this thesis focuses on evaluating how changes in the chemical structure of the polymers impact the thermoresponsive, aggregation and co-nonsolvency behaviors of both homopolymers and amphiphilic block copolymers. Within this scope, both the synthesis of the polymers and their characterization in solution is investigated. Homopolymers were synthesized by conventional free radical polymerization, whereas block copolymers were synthesized by consecutive reversible addition fragmentation chain transfer (RAFT) polymerizations. The synthesis of the monomers N isopropyl methacrylamide (NIPMAM) and N vinyl isobutyramide (NVIBAM), as well as a few chain transfer agents is also covered. Through turbidimetry measurements, the thermoresponsive and co-nonsolvency behavior of PNIPMAM and PNVIBAM homopolymers is then compared to the well-known PNIPAM, in aqueous solutions with 9 different organic co-solvents. Additionally, the effects of end-groups, molar mass, and concentration are investigated. Despite the similarity of their chemical structures, the 3 homopolymers show significant differences in transition temperatures and some divergences in their co-nonsolvency behavior. More complex systems are also evaluated, namely amphiphilic di- and triblock copolymers of PNIPAM and PNIPMAM with polystyrene and poly(methyl methacrylate) hydrophobic blocks. Dynamic light scattering is used to evaluate their aggregation behavior in aqueous and mixed aqueous solutions, and how it is affected by the chemical structure of the blocks, the chain architecture, presence of cosolvents and polymer concentration. The results obtained shed light into the thermoresponsive, co-nonsolvency and aggregation behavior of these polymers in solution, providing valuable information for the design of systems with a desired aggregation behavior, and that generate targeted responses to temperature and solvent mixture changes.}, language = {en} } @phdthesis{Esen2023, author = {Esen, Cansu}, title = {Carbon nitride incorporation in polymer networks}, doi = {10.25932/publishup-57625}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-576253}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 175}, year = {2023}, abstract = {The urge of light utilization in fabrication of materials is as encouraging as challenging. Steadily increasing energy consumption in accordance with rapid population growth, is requiring a corresponding solution within the same rate of occurrence speed. Therefore, creating, designing and manufacturing materials that can interact with light and in further be applicable as well as disposable in photo-based applications are very much under attention of researchers. In the era of sustainability for renewable energy systems, semiconductor-based photoactive materials have received great attention not only based on solar and/or hydrocarbon fuels generation from solar energy, but also successful stimulation of photocatalytic reactions such as water splitting, pollutant degradation and organic molecule synthesisThe turning point had been reached for water splitting with an electrochemical cell consisting of TiO2-Pt electrode illuminated by UV light as energy source rather than an external voltage, that successfully pursued water photolysis by Fujishima and Honda in 1972. Ever since, there has been a great deal of interest in research of semiconductors (e.g. metal oxide, metal-free organic, noble-metal complex) exhibiting effective band gap for photochemical reactions. In the case of environmental friendliness, toxicity of metal-based semiconductors brings some restrictions in possible applications. Regarding this, very robust and 'earth-abundant' organic semiconductor, graphitic carbon nitride has been synthesized and successfully applied in photoinduced applications as novel photocatalyst. Properties such as suitable band gap, low charge carrier recombination and feasibility for scaling up, pave the way of advance combination with other catalysts to gather higher photoactivity based on compatible heterojunction. This dissertation aims to demonstrate a series of combinations between organic semiconductor g-CN and polymer materials that are forged through photochemistry, either in synthesis or in application. Fabrication and design processes as well as applications performed in accordance to the scope of thesis will be elucidated in detail. In addition to UV light, more attention is placed on visible light as energy source with a vision of more sustainability and better scalability in creation of novel materials and solar energy based applications.}, language = {en} } @phdthesis{Luedecke2022, author = {L{\"u}decke, Nils}, title = {Bio-sourced adsorbing poly(2-oxazoline)s mimicking mussel glue proteins for antifouling applications}, doi = {10.25932/publishup-54983}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549836}, school = {Universit{\"a}t Potsdam}, pages = {iii, 224}, year = {2022}, abstract = {Nature developed countless systems for many applications. In maritime environments, several organisms established extra-ordinary mechanisms to attach to surfaces. Over the past years, the scientific interest to employ those mechanisms for coatings and long-lasting adhering materials gained significant attention. This work describes the synthesis of bio-inspired adsorbing copoly(2-oxazoline)s for surface coatings with protein repelling effects, mimicking mussel glue proteins. From a set of methoxy substituted phenyl, benzyl, and cinnamyl acids, 2-oxazoline monomers were synthesized. All synthesized 2-oxazolines were analyzed by FT-IR spectroscopy, NMR spectroscopy, and EI mass spectrometry. With those newly synthesized 2-oxazoline monomers and 2-ethyl-2-oxazoline, kinetic studies concerning homo- and copolymerization in a microwave reactor were conducted. The success of the polymerization reactions was demonstrated by FT-IR spectroscopy, NMR spectroscopy, MALDI-TOF mass spectrometry, and size exclusion chromatography (SEC). The copolymerization of 2-ethyl-2-oxazoline with a selection of methoxy-substituted 2-oxazolines resulted in water-soluble copolymers. To release the adsorbing catechol and cationic units, the copoly(2-oxazoline)s were modified. The catechol units were (partially) released by a methyl aryl ether cleavage reaction. A subsequent partial acidic hydrolysis of the ethyl unit resulted in mussel glue protein-inspired catechol and cation-containing copolymers. The modified copolymers were analyzed by NMR spectroscopy, UV-VIS spectroscopy, and SEC. The catechol- and cation-containing copolymers and their precursors were examined by a Quartz Crystal Microbalance with Dissipation (QCM-D), so study the adsorption performance on gold, borosilicate, iron, and polystyrene surfaces. An exemplary study revealed that a catechol and cation-containing copoly(2-oxazoline)-coated gold surface exhibits strong protein repelling properties.}, language = {en} } @phdthesis{Gaebert2022, author = {G{\"a}bert, Chris}, title = {Light-responsive polymer systems aiming towards programmable friction}, doi = {10.25932/publishup-55338}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-553380}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 108, XXVI}, year = {2022}, abstract = {The development of novel programmable materials aiming to control friction in real-time holds potential to facilitate innovative lubrication solutions for reducing wear and energy losses. This work describes the integration of light-responsiveness into two lubricating materials, silicon oils and polymer brush surfaces. The first part focusses on the assessment on 9-anthracene ester-terminated polydimethylsiloxanes (PDMS-A) and, in particular, on the variability of rheological properties and the implications that arise with UV-light as external trigger. The applied rheometer setup contains an UV-transparent quartz-plate, which enables radiation and simultaneous measurement of the dynamic moduli. UV-A radiation (354 nm) triggers the cycloaddition reaction between the terminal functionalities of linear PDMS, resulting in chain extension. The newly-formed anthracene dimers cleave by UV-C radiation (254 nm) or at elevated temperatures (T > 130 °C). The sequential UV-A radiation and thermal reprogramming over three cycles demonstrate high conversions and reproducible programming of rheological properties. In contrast, the photochemical back reaction by UV-C is incomplete and can only partially restore the initial rheological properties. The dynamic moduli increase with each cycle in photochemical programming, presumably resulting from a chain segment re-arrangement as a result of the repeated partial photocleavage and subsequent chain length-dependent dimerization. In addition, long periods of radiation cause photooxidative degradation, which damages photo-responsive functions and consequently reduces the programming range. The absence of oxygen, however, reduces undesired side reactions. Anthracene-functionalized PDMS and native PDMS mix depending on the anthracene ester content and chain length, respectively, and allow fine-tuning of programmable rheological properties. The work shows the influence of mixing conditions during the photoprogramming step on the rheological properties, indicating that material property gradients induced by light attenuation along the beam have to be considered. Accordingly, thin lubricant films are suggested as potential application for light-programmable silicon fluids. The second part compares strategies for the grafting of spiropyran (SP) containing copolymer brushes from Si wafers and evaluates the light-responsiveness of the surfaces. Pre-experiments on the kinetics of the thermally initiated RAFT copolymerization of 2-hydroxyethyl acrylate (HEA) and spiropyran acrylate (SPA) in solution show, first, a strong retardation by SP and, second, the dependence of SPA polymerization on light. Surprisingly, the copolymerization of SPA is inhibited in the dark. These findings contribute to improve the synthesis of polar, spiropyran-containing copolymers. The comparison between initiator systems for the grafting-from approach indicates PET-RAFT superior to thermally initiated RAFT, suggesting a more efficient initiation of surface-bound CTA by light. Surface-initiated polymerization via PET-RAFT with an initiator system of EosinY (EoY) and ascorbic acid (AscA) facilitates copolymer synthesis from HEA and 5-25 mol\% SPA. The resulting polymer film with a thickness of a few nanometers was detected by atomic force microscopy (AFM) and ellipsometry. Water contact angle (CA) measurements demonstrate photo-switchable surface polarity, which is attributed to the photoisomerization between non-polar spiropyran and zwitterionic merocyanine isomer. Furthermore, the obtained spiropyran brushes show potential for further studies on light-programmable properties. In this context, it would be interesting to investigate whether swollen spiropyran-containing polymers change their configuration and thus their film thickness under the influence of light. In addition, further experiments using an AFM or microtribometer should evaluate whether light-programmable solvation enables a change in frictional properties between polymer brush surfaces.}, language = {en} } @phdthesis{Schulze2019, author = {Schulze, Tanja}, title = {Untersuchungen zur Entwicklung und Synthese neuartiger Gelenkst{\"a}be basierend auf Oligospiroketalen}, school = {Universit{\"a}t Potsdam}, pages = {174}, year = {2019}, language = {de} } @phdthesis{Cao2020, author = {Cao, Qian}, title = {Graphitic carbon nitride and polymer hybrid materials}, school = {Universit{\"a}t Potsdam}, pages = {132}, year = {2020}, abstract = {Advanced hybrid materials are recognized as one of the most significant enablers for new technologies, which holds true especially on the quest for sustainable energy sources and energy production schemes (e.g., semiconductor based photocatalytic materials). Usually, a single component is far from meeting all the demands needed for these advanced applications. Hybrid materials are composed of at least two components commonly an inorganic and an organic material on the molecular level, which feature novel properties exceeding the sum of the individual parts and might be the milestones of next-generation applications. This dissertation aims to provide novel combinations of the metal-free semiconductor graphitic carbon nitride (g-C3N4) with polymers to obtain materials with advanced properties and applications. Visible light constitutes the core of the present work as it is the only energy source utilized either in synthesis or in the application process. In the area of applications by combination of g-C3N4 and polymers, two different hybrids were thoroughly elucidated, i.e.. their design and construction as well as potential application in photocatalysis. Novel soft 3D liquid objects were formed via charge-interaction driven interfacial jamming between polyelectrolytes in aqueous environment and colloidal dispersions of g-C3N4 in edible sunflower oil. As such, stable liquid objects could be molded into specific shapes and utilized for photodegradation of organic dyes in water. Furthermore, the grafting of polymers onto g-C3N4 was investigated. Allyl-end functionalized polymers were grafted onto g-C3N4 by a photoinitiated process to yield g-C3N4 with versatile and improved properties, e.g. advanced dispersibility enabling processing via spin coating. As g-C3N4 produces radicals under visible light irradiation, which is of significant interest for polymer science, g-C3N4 containing polymer latex and macrogel beads (MGB) were synthesized by emulsion photopolymerization and inverse suspension photopolymerization, respectively. A well-controlled emulsion photopolymerization process via g-C3N4 initiation was designed, which features synthesis of well-defined and cross-linked polymer particles. Furthermore, the polymerization process was investigated thoroughly, indicating an ad-layer polymerization in early stages of the process. The utilization of functionalized g-C3N4 allowed the polymerization of various monomer types. Moreover, g-C3N4 was utilized as photoinitiator in hydrogel MGB formation. The formed MGB properties could be tailored via process design, e.g. stirring rate, cross-linker content and g-C3N4 content. Finally, MGBs were introduced as photocatalyst for waste water remediation, i.e. the degradation of Rhodamine B in aqueous solution was studied. The present thesis therefore builds a bridge between g-C3N4 and polymers and provides strategies for hybrid material formation. Furthermore, several potential applications are revealed with significant implications for photocatalysis, polymerization processes and polymer materials.}, language = {en} } @phdthesis{Raju2021, author = {Raju, Rajarshi Roy}, title = {'Smart' Janus emulsions}, school = {Universit{\"a}t Potsdam}, year = {2021}, abstract = {Emulsions constitute one of the most prominent and continuously evolving research areas in Colloid Chemistry, which involves the preparation of mixtures or dispersions of immiscible components in a continuous medium. Besides conventional oil-in-water or water-in-oil emulsions, other emulsions of complex droplet morphologies have recently attracted significant research interests. Especially Janus emulsions, in which each droplet is comprised of two distinct sub-regions, have shown versatile potential applications. One of their advantages is the possibility of compartmentalization, which enables to play with two different chemistries in a single droplet. Though microfluidic methods are conventionally used to prepare Janus emulsions, their industrial applications are largely hindered by low throughput and extensive instrumentations. Recently, it has been discovered that simply one-pot moderate/high energy emulsification is also capable of developing Janus morphology, although their preparation and stabilization remain rather substantially challenging. This cumulative doctoral thesis focuses on the preparation and characterization of 'smart' Janus emulsions, i.e. Janus emulsions with special stimuli-responsive features. One-step moderate/high energy emulsification of olive and silicone oil in an aqueous medium was carried out. Special consideration was devoted to the interfacial tensions among the components to maintain the criteria of forming characteristic droplet architectures, in addition to avoiding multiple emulsion destabilization phenomena like imminent phase separation or even separated droplet formation. A series of investigations were conducted related to the formation of complexes of charged macromolecules and role of them as stabilizers to achieve stable Janus emulsions for a realistic timeframe (more than 3 months). The correlation between the size of the stabilizer particles and the droplet size of emulsion was established. Furthermore, it was observed that Janus emulsion gels with interesting rheological properties can be fabricated in the presence of suitable polyelectrolyte complexes. Janus emulsions that could be influenced by pH, temperature or magnetic field were successfully produced in presence of characteristic stimuli-responsive stabilizers. Afterwards, the effect of these changes was studied by different characterization techniques. The size and morphology could be tuned easily by changing the pH. The incorporation of iron oxide magnetic nanoparticles (synthesized separately by a co-precipitation method) to one component of the Janus emulsion was carried out so that the movement and orientation of the complex droplets in aqueous media could be controlled by an external magnetic field. Additionally, temperature-triggered instantaneous reversible breakdown of Janus droplets was also accomplished. The responses of the Janus droplets by the stimuli were well-documented and explained. Another goal of the present contribution was to exploit this special morphological feature of emulsions as a template for producing porous materials. This was demonstrated by the preparation of ultralight magnetic responsive aerogels, utilizing Janus emulsion gels. The produced aerogels also showed the capacity to separate toxic dye from water. To the best of our knowledge, this is the first example of investigation towards batch scale production of Janus emulsion with such special stimuli-responsive properties by a simple bulk emulsification method.}, language = {en} } @phdthesis{Neumann2022, author = {Neumann, Christian}, title = {Development of functionalized waterborne coatings for the production of multifunctional microapsules}, pages = {127}, year = {2022}, language = {en} } @phdthesis{Brandi2022, author = {Brandi, Francesco}, title = {Integrated biorefinery in continuous flow systems using sustainable heterogeneous catalysts}, doi = {10.25932/publishup-53766}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-537660}, school = {Universit{\"a}t Potsdam}, pages = {xii, 201}, year = {2022}, abstract = {The negative impact of crude oil on the environment has led to a necessary transition toward alternative, renewable, and sustainable resources. In this regard, lignocellulosic biomass (LCB) is a promising renewable and sustainable alternative to crude oil for the production of fine chemicals and fuels in a so-called biorefinery process. LCB is composed of polysaccharides (cellulose and hemicellulose), as well as aromatics (lignin). The development of a sustainable and economically advantageous biorefinery depends on the complete and efficient valorization of all components. Therefore, in the new generation of biorefinery, the so-called biorefinery of type III, the LCB feedstocks are selectively deconstructed and catalytically transformed into platform chemicals. For this purpose, the development of highly stable and efficient catalysts is crucial for progress toward viability in biorefinery. Furthermore, a modern and integrated biorefinery relies on process and reactor design, toward more efficient and cost-effective methodologies that minimize waste. In this context, the usage of continuous flow systems has the potential to provide safe, sustainable, and innovative transformations with simple process integration and scalability for biorefinery schemes. This thesis addresses three main challenges for future biorefinery: catalyst synthesis, waste feedstock valorization, and usage of continuous flow technology. Firstly, a cheap, scalable, and sustainable approach is presented for the synthesis of an efficient and stable 35 wt.-\% Ni catalyst on highly porous nitrogen-doped carbon support (35Ni/NDC) in pellet shape. Initially, the performance of this catalyst was evaluated for the aqueous phase hydrogenation of LCB-derived compounds such as glucose, xylose, and vanillin in continuous flow systems. The 35Ni/NDC catalyst exhibited high catalytic performances in three tested hydrogenation reactions, i.e., sorbitol, xylitol, and 2-methoxy-4-methylphenol with yields of 82 mol\%, 62 mol\%, and 100 mol\% respectively. In addition, the 35Ni/NDC catalyst exhibited remarkable stability over a long time on stream in continuous flow (40 h). Furthermore, the 35Ni/NDC catalyst was combined with commercially available Beta zeolite in a dual-column integrated process for isosorbide production from glucose (yield 83 mol\%). Finally, 35Ni/NDC was applied for the valorization of industrial waste products, namely sodium lignosulfonate (LS) and beech wood sawdust (BWS) in continuous flow systems. The LS depolymerization was conducted combining solvothermal fragmentation of water/alcohol mixtures (i.e.,methanol/water and ethanol/water) with catalytic hydrogenolysis/hydrogenation (SHF). The depolymerization was found to occur thermally in absence of catalyst with a tunable molecular weight according to temperature. Furthermore, the SHF generated an optimized cumulative yield of lignin-derived phenolic monomers of 42 mg gLS-1. Similarly, a solvothermal and reductive catalytic fragmentation (SF-RCF) of BWS was conducted using MeOH and MeTHF as a solvent. In this case, the optimized total lignin-derived phenolic monomers yield was found of 247 mg gKL-1.}, language = {en} } @phdthesis{Hechenbichler2021, author = {Hechenbichler, Michelle}, title = {New thermoresponsive amphiphilic block copolymers with unconventional chemical structure and architecture}, doi = {10.25932/publishup-54182}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-541822}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 186}, year = {2021}, abstract = {Das Aggregationsverhalten von amphiphilen Blockcpoolymeren ist wichtig f{\"u}r zahlreiche Anwendungen, beispielsweise in der Waschmittelindustrie als Verdicker oder in der Pharmazie zur kontrollierten Freisetzung von Wirkstoffen. Wenn einer der Bl{\"o}cke thermoresponsiv ist, kann das Aggregationsverhalten zus{\"a}tzlich {\"u}ber die Temperatur gesteuert werden. W{\"a}hrend sich die bisherigen Untersuchungen solcher „intelligenten" Systeme zumeist auf einfache Diblockcopolymere beschr{\"a}nkt haben, wurde in der vorliegenden Arbeit die Komplexit{\"a}t der Polymere und damit die Vielseitigkeit dieser Systeme erh{\"o}ht. Dazu wurden spezifische Monomere, verschiedene Blockl{\"a}ngen, unterschiedliche Architekturen und zus{\"a}tzliche funktionelle Gruppen eingef{\"u}hrt. Durch systematische {\"A}nderungen wurde das Struktur-Wirkungsverhalten solcher thermoresponsiver amphiphiler Blockcopolymere untersucht. Dabei sind die Blockcopolymere typischerweise aus einem permanent hydrophoben „Sticker", einem permanent hydrophilen Block sowie einem thermoresponsiven Block, der ein Lower Critical Solution Temperature (LCST) Verhalten zeigt, aufgebaut. W{\"a}hrend der permanent hydrophile Block aus N,N Dimethylacrylamid (DMAm) bestand, wurden f{\"u}r den thermoresponsiven Block unterschiedliche Monomere, n{\"a}mlich N n Propylacrylamid (NPAm), N iso Propylacrylamid (NiPAm), N,N Diethylacrylamid (DEAm), N,N Bis(2 methoxyethyl)acrylamid (bMOEAm), oder N Acryloylpyrrolidin (NAP) mit entsprechend unterschiedlichen LCSTs von 25, 32, 33, 42 und 56 °C verwendet. Die Blockcopolymere wurden mittels aufeinanderfolgender reversibler Additions-Fragmentierungs-Ketten{\"u}bertragungspolymerisation (RAFT Polymerisation) hergestellt, um Polymere mit linearer, doppelt hydrophober sowie symmetrischer Quasi Miktoarm Architektur zu erhalten. Dabei wurden wohldefinierte Blockgr{\"o}ßen, Endgruppen und enge Molmassenverteilungen (Ɖ ≤ 1.3) erzielt. F{\"u}r komplexere Architekturen, wie die doppelt thermoresponsive und die nicht symmetrische Quasi Miktoarm Architekturen, wurde RAFT mit Atomtransfer-Radikalpolymerisation (ATRP) oder Single Unit Monomer Insertion (SUMI), kombiniert. Die dabei erhaltenen Blockcopolymere hatten ebenfalls wohldefinierte Blockl{\"a}ngen, allerdings war die Molmassenverteilung generell breiter (Ɖ ≤ 1.8) und Endgruppen gingen zum Teil verloren, da komplexere Syntheseschritte n{\"o}tig waren. Das thermoresponsive Verhalten in w{\"a}ssriger L{\"o}sung wurde mittels Tr{\"u}bungspunktmessung und Dynamischer Lichtstreuung (DLS) untersucht. Unterhalb der Phasen{\"u}berganstemperatur waren die Polymere l{\"o}slich in Wasser und mizellare Strukturen waren in der DLS sichtbar. Oberhalb der Phasen{\"u}bergangstemperatur war das Aggregationsverhalten dann stark abh{\"a}ngig von der Architektur und der chemischen Struktur des thermoresponsiven Blocks. Thermoresponsive Bl{\"o}cke aus PNAP und PbMOEAm mit einer Blockl{\"a}nge von DPn = 40 zeigten keinen Tr{\"u}bungspunkt (CP) bis hin zu 80 °C, da durch den angebrachten hydrophilen PDMAm Block die bereits hohe LCST der entsprechenden Homopolymere bei den Blockcopolymeren weiter erh{\"o}ht wurde. Blockcopolymere mit PNiPAm, PDEAm und PNPAm hinggeen zeigten abh{\"a}ngig von der Architektur und Blockgr{\"o}ße unterschiedliche CP's. Oberhalb der CP's waren gr{\"o}ßere Aggregate vor allem f{\"u}r die Blockcopolymere mit PNiPAm und PDEAm sichtbar, wohingegen der Phasen{\"u}bergang f{\"u}r Blockcopolymere mit PNPAm stark abh{\"a}ngig von der jeweiligen Architektur war und entsprechend kleinere oder gr{\"o}ßere Aggregate zeigte. Um das Aggregationsverhalten besser zu verstehen, wurden Fluoreszenzstudien an PDMAm und PNiPAm Homo und Blockcopolymeren mit linearer Architektur durchgef{\"u}hrt, welche mit komplement{\"a}ren Fluoreszenzfarbstoffen an den entgegengesetzten Kettenenden funktionalisiert wurden. Das thermoresponsive Verhalten wurde dabei sowohl in Wasser als auch in {\"O}l-in-Wasser Mikroemulsion untersucht. Die Ergebnisse zeigten, dass das Blockcopolymer sich, {\"a}hnlich wie die anderen hergestellten Architekturen, bei niedrigen Temperaturen wie ein Polymertensid verh{\"a}lt. Dabei bilden die hydrophoben Stickergruppen den Kern und die hydrophilen Arme die Corona der Mizelle. Oberhalb des Phasen{\"u}bergangs des PNiPAm Blocks verhielten sich die Blockcopolymere allerdings wie assoziative Telechele mit zwei nicht symmetrischen hydrophoben Endgruppen, die sich untereinander nicht mischten. Daher bildeten die Blockcopolymere anstatt aggregierter „Blumen"-Mizellen gr{\"o}ßere, dynamische Aggregate. Diese sind einerseits {\"u}ber die urspr{\"u}nglichen Mizellkerne bestehend aus den hydrophoben Sticker als auch {\"u}ber Cluster der kollabierten thermoresponsiven Bl{\"o}cke miteinander verkn{\"u}pft. In Mikroemulsion ist diese Art der Netzwerkbildung noch st{\"a}rker ausgepr{\"a}gt.}, language = {en} } @phdthesis{FortesMartin2023, author = {Fortes Mart{\´i}n, Rebeca}, title = {Water-in-oil microemulsions as soft-templates to mediate nanoparticle interfacial assembly into hybrid nanostructures}, doi = {10.25932/publishup-57180}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571801}, school = {Universit{\"a}t Potsdam}, pages = {119}, year = {2023}, abstract = {Hybrid nanomaterials offer the combination of individual properties of different types of nanoparticles. Some strategies for the development of new nanostructures in larger scale rely on the self-assembly of nanoparticles as a bottom-up approach. The use of templates provides ordered assemblies in defined patterns. In a typical soft-template, nanoparticles and other surface-active agents are incorporated into non-miscible liquids. The resulting self-organized dispersions will mediate nanoparticle interactions to control the subsequent self-assembly. Especially interactions between nanoparticles of very different dispersibility and functionality can be directed at a liquid-liquid interface. In this project, water-in-oil microemulsions were formulated from quasi-ternary mixtures with Aerosol-OT as surfactant. Oleyl-capped superparamagnetic iron oxide and/or silver nanoparticles were incorporated in the continuous organic phase, while polyethyleneimine-stabilized gold nanoparticles were confined in the dispersed water droplets. Each type of nanoparticle can modulate the surfactant film and the inter-droplet interactions in diverse ways, and their combination causes synergistic effects. Interfacial assemblies of nanoparticles resulted after phase-separation. On one hand, from a biphasic Winsor type II system at low surfactant concentration, drop-casting of the upper phase afforded thin films of ordered nanoparticles in filament-like networks. Detailed characterization proved that this templated assembly over a surface is based on the controlled clustering of nanoparticles and the elongation of the microemulsion droplets. This process offers versatility to use different nanoparticle compositions by keeping the surface functionalization, in different solvents and over different surfaces. On the other hand, a magnetic heterocoagulate was formed at higher surfactant concentration, whose phase-transfer from oleic acid to water was possible with another auxiliary surfactant in ethanol-water mixture. When the original components were initially mixed under heating, defined oil-in-water, magnetic-responsive nanostructures were obtained, consisting on water-dispersible nanoparticle domains embedded by a matrix-shell of oil-dispersible nanoparticles. Herein, two different approaches were demonstrated to form diverse hybrid nanostructures from reverse microemulsions as self-organized dispersions of the same components. This shows that microemulsions are versatile soft-templates not only for the synthesis of nanoparticles, but also for their self-assembly, which suggest new approaches towards the production of new sophisticated nanomaterials in larger scale.}, language = {en} } @phdthesis{Tang2022, author = {Tang, Jo Sing Julia}, title = {Biofunctional polymers for medical applications}, doi = {10.25932/publishup-56363}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563639}, school = {Universit{\"a}t Potsdam}, pages = {III, 150, V}, year = {2022}, abstract = {Carbohydrates are found in every living organism, where they are responsible for numerous, essential biological functions and processes. Synthetic polymers with pendant saccharides, called glycopolymers, mimic natural glycoconjugates in their special properties and functions. Employing such biomimetics furthers the understanding and controlling of biological processes. Hence, glycopolymers are valuable and interesting for applications in the medical and biological field. However, the synthesis of carbohydrate-based materials can be very challenging. In this thesis, the synthesis of biofunctional glycopolymers is presented, with the focus on aqueous-based, protecting group free and short synthesis routes to further advance in the field of glycopolymer synthesis. A practical and versatile precursor for glycopolymers are glycosylamines. To maintain biofunctionality of the saccharides after their amination, regioselective functionalization was performed. This frequently performed synthesis was optimized for different sugars. The optimization was facilitated using a design of experiment (DoE) approach to enable a reduced number of necessary experiments and efficient procedure. Here, the utility of using DoE for optimizing the synthesis of glycosylamines is discussed. The glycosylamines were converted to glycomonomers which were then polymerized to yield biofunctional glycopolymers. Here, the glycopolymers were aimed to be applicable as layer-by-layer (LbL) thin film coatings for drug delivery systems. To enable the LbL technique, complimentary glycopolymer electrolytes were synthesized by polymerization of the glycomonomers and subsequent modification or by post-polymerization modification. For drug delivery, liposomes were embedded into the glycopolymer coating as potential cargo carriers. The stability as well as the integrity of the glycopolymer layers and liposomes were investigated at physiological pH range. Different glycopolymers were also synthesized to be applicable as anti-adhesion therapeutics by providing advanced architectures with multivalent presentations of saccharides, which can inhibit the binding of pathogene lectins. Here, the synthesis of glycopolymer hydrogel particles based on biocompatible poly(N-isopropylacrylamide) (NiPAm) was established using the free-radical precipitation polymerization technique. The influence of synthesis parameters on the sugar content in the gels and on the hydrogel morphology is discussed. The accessibility of the saccharides to model lectins and their enhanced, multivalent interaction were investigated. At the end of this work, the synthesis strategies for the glycopolymers are generally discussed as well as their potential application in medicine.}, language = {en} } @phdthesis{Debsharma2019, author = {Debsharma, Tapas}, title = {Cellulose derived polymers}, doi = {10.25932/publishup-44131}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441312}, school = {Universit{\"a}t Potsdam}, pages = {x, 103}, year = {2019}, abstract = {Plastics, such as polyethylene, polypropylene, and polyethylene terephthalate are part of our everyday lives in the form of packaging, household goods, electrical insulation, etc. These polymers are non-degradable and create many environmental problems and public health concerns. Additionally, these polymers are produced from finite fossils resources. With the continuous utilization of these limited resources, it is important to look towards renewable sources along with biodegradation of the produced polymers, ideally. Although many bio-based polymers are known, such as polylactic acid, polybutylene succinate adipate or polybutylene succinate, none have yet shown the promise of replacing conventional polymers like polyethylene, polypropylene and polyethylene terephthalate. Cellulose is one of the most abundant renewable resources produced in nature. It can be transformed into various small molecules, such as sugars, furans, and levoglucosenone. The aim of this research is to use the cellulose derived molecules for the synthesis of polymers. Acid-treated cellulose was subjected to thermal pyrolysis to obtain levoglucosenone, which was reduced to levoglucosenol. Levoglucosenol was polymerized, for the first time, by ring-opening metathesis polymerization (ROMP) yielding high molar mass polymers of up to ~150 kg/mol. The poly(levoglucosenol) is thermally stable up to ~220 ℃, amorphous, and is exhibiting a relatively high glass transition temperature of ~100 ℃. The poly(levoglucosenol) can be converted to a transparent film, resembling common plastic, and was found to degrade in a moist acidic environment. This means that poly(levoglucosenol) may find its use as an alternative to conventional plastic, for instance, polystyrene. Levoglucosenol was also converted into levoglucosenyl methyl ether, which was polymerized by cationic ring-opening metathesis polymerization (CROP). Polymers were obtained with molar masses up to ~36 kg/mol. These polymers are thermally stable up to ~220 ℃ and are semi-crystalline thermoplastics, having a glass transition temperature of ~35 ℃ and melting transition of 70-100 ℃. Additionally, the polymers underwent cross-linking, hydrogenation and thiol-ene click chemistry.}, language = {en} } @phdthesis{Grunert2018, author = {Grunert, Bianca}, title = {Entwicklung von Markierungsreagenzien f{\"u}r die bildgebende Diagnostik}, doi = {10.25932/publishup-42283}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422830}, school = {Universit{\"a}t Potsdam}, pages = {155}, year = {2018}, abstract = {Die intrazellul{\"a}re Markierung mit geeigneten Reagenzien erm{\"o}glicht ihre bildgebende Darstellung in lebenden Organismen. Dieses Verfahren (auch „Zell-Tracking" genannt) wird in der Grundlagenforschung zur Entwicklung zellul{\"a}rer Therapien, f{\"u}r die Erforschung pathologischer Prozesse, wie der Metastasierung, sowie f{\"u}r Therapiekontrollen eingesetzt. Besondere Bedeutung haben in den letzten Jahren zellul{\"a}re Therapien mit Stammzellen erlangt, da sie großes Potential bei der Regeneration von Geweben bei Krankheiten wie Morbus Parkinson oder Typ-1-Diabetes versprechen. F{\"u}r die Entwicklung einer zellul{\"a}ren Therapie sind Informationen {\"u}ber den Verbleib der applizierten Zellen in vivo (Homing-Potential), {\"u}ber ihre Zellphysiologie sowie {\"u}ber die Entstehung m{\"o}glicher Entz{\"u}ndungen notwendig. Das Ziel der vorliegenden Arbeit war daher die Synthese von Markierungsreagenzien, die nicht nur eine effiziente Zellmarkierung erm{\"o}glichen, sondern einen synergistischen Effekt hinsichtlich des modalit{\"a}ts{\"u}bergreifenden Einsatzes in den bildgebenden Verfahren MRT und Laser-Ablation(LA)-ICP-MS erlauben. Die MRT-Bildgebung erm{\"o}glicht die nicht invasive Nachverfolgung markierter Zellen in vivo und die LA-ICP-MS die anschließende ex vivo Analytik zur Darstellung der Elementverteilung (Bioimaging) in einer Biopsieprobe oder in einem Gewebeschnitt. F{\"u}r diese Zwecke wurden zwei verschiedene Markierungsreagenzien mit dem kontrastgebenden Element Gadolinium synthetisiert. Gadolinium eignet sich aufgrund seines hohen magnetischen Moments hervorragend f{\"u}r die MRT-Bildgebung und da es in Biomolek{\"u}len nicht nat{\"u}rlich vorkommt, konnten die Reagenzien gleichermaßen f{\"u}r die Zellmarkierung und das Bioimaging mit der LA-ICP-MS untersucht werden. F{\"u}r die Synthese eines makromolekularen Reagenzes wurde das kommerziell verf{\"u}gbare Dendrimer G5-PAMAM {\"u}ber bifunktionelle Linker mit dem Chelator DOTA funktionalisiert, um anschließend Gadolinium zu komplexieren. Ein zweites, nanopartikul{\"a}res Reagenz wurde {\"u}ber eine Solvothermal-Synthese erhalten, bei der Ln:GdVO4-Nanokristalle mit einer funktionellen Polyacryls{\"a}ure(PAA)-H{\"u}lle dargestellt wurden. Die Dotierung der Ln:GdVO4-PAA Nanokristalle mit verschiedenen Lanthanoiden (Ln=Eu, Tb) zeigte ihre prinzipielle Multiplexf{\"a}higkeit in der LA-ICP-MS. Beide Markierungsreagenzien zeichneten sich durch gute Biovertr{\"a}glichkeiten und r1-Relaxivit{\"a}ten aus, was zudem ihr Potential f{\"u}r Anwendungen als pr{\"a}klinische „blood-pool" MRT-Kontrastmittel belegte. Die Untersuchung der Zellmarkierung erfolgte anhand einer Tumorzelllinie und einer Stammzelllinie, wobei beide Zellarten erfolgreich intrazellul{\"a}r mit beiden Reagenzien markiert wurden. Nach der Zellmarkierung veranschaulichte die in vitro MRT-Bildgebung von Zell-Phantomen eine deutlichere Kontrastverst{\"a}rkung der Zellen nach der Markierung mit den Nanokristallen im Vergleich zum kommerziellen Kontrastmittel Magnevist®. Die hohe Effizienz der Zellmarkierung mit den Nanokristallen und die damit verbundenen hohen Signalintensit{\"a}ten in einer einzelnen Zelle erlaubten beim Bioimaging mit der LA-ICP-MS, Messungen bis zu einer Aufl{\"o}sung von 4 µm Laser Spot Size. Nach der Zellmarkierung mit den DOTA(Gd3+)-funktionalisierten G5-PAMAM Dendrimeren waren hingegen Aufnahmen mit der LA-ICP-MS nur bis zu einer Aufl{\"o}sung von 12 µm Laser Spot Size m{\"o}glich. Insgesamt waren die Ln:GdVO4-PAA Nanokristalle mit gr{\"o}ßerer Ausbeute und kosteng{\"u}nstiger herstellbar als die DOTA(Gd3+)-funktionalisierten G5-PAMAM Dendrimere und zeigten zudem eine effizientere Zellmarkierung. Die Ln:GdVO4-PAA Nanokristalle erscheinen somit f{\"u}r das Zell-Tracking als besonders vielversprechend. Darauf aufbauend wurden die Nanokristalle zur Etablierung der Antik{\"o}rper-Konjugation ausgew{\"a}hlt, was sie f{\"u}r die molekulare in vivo Bildgebung sowie f{\"u}r die Immuno-Bildgebung von Gewebeschnitten oder Biopsie-Proben mit der LA-ICP-MS anwendbar macht.}, language = {de} } @phdthesis{Baryzewska2023, author = {Baryzewska, Agata W.}, title = {Reconfigurable Janus emulsions as signal transducers for biosensing applications}, school = {Universit{\"a}t Potsdam}, pages = {133}, year = {2023}, language = {en} } @phdthesis{Heinke2018, author = {Heinke, David}, title = {Biokompatible superparamagnetische Nanopartikel}, publisher = {Infinite Science Publishing}, address = {L{\"u}beck}, isbn = {978-3-945954-45-4}, pages = {142}, year = {2018}, abstract = {Magnetische Eisenoxidnanopartikel werden bereits seit geraumer Zeit erfolgreich als MRT-Kontrastmittel in der klinischen Bildgebung eingesetzt. Durch Optimierung der magnetischen Eigenschaften der Nanopartikel kann die Aussagekraft von MR-Aufnahmen verbessert und somit der diagnostische Wert einer MR-Anwendung weiter erh{\"o}ht werden. Neben der Verbesserung bestehender Verfahren wird die bildgebende Diagnostik ebenso durch die Entwicklung neuer Verfahren, wie dem Magnetic Particle Imaging, vorangetrieben. Da hierbei das Messsignal von den magnetischen Nanopartikeln selbst erzeugt wird, birgt das MPI einen enormen Vorteil hinsichtlich der Sensitivit{\"a}t bei gleichzeitig hoher zeitlicher und r{\"a}umlicher Aufl{\"o}sung. Da es aktuell jedoch keinen kommerziell vertriebenen in vivo-tauglichen MPI-Tracer gibt, besteht ein dringender Bedarf an geeigneten innovativen Tracermaterialien. Daraus resultierte die Motivation dieser Arbeit biokompatible und superparamagnetische Eisenoxidnanopartikel f{\"u}r den Einsatz als in vivo-Diagnostikum insbesondere im Magnetic Particle Imaging zu entwickeln. Auch wenn der Fokus auf der Tracerentwicklung f{\"u}r das MPI lag, wurde ebenso die MR-Performance bewertet, da geeignete Partikel somit alternativ oder zus{\"a}tzlich als MR-Kontrastmittel mit verbesserten Kontrasteigenschaften eingesetzt werden k{\"o}nnten. Die Synthese der Eisenoxidnanopartikel erfolgte {\"u}ber die partielle Oxidation von gef{\"a}lltem Eisen(II)-hydroxid und Green Rust sowie eine diffusionskontrollierte Kopr{\"a}zipitation in einem Hydrogel. Mit der partiellen Oxidation von Eisen(II)-hydroxid und Green Rust konnten erfolgreich biokompatible und {\"u}ber lange Zeit stabile Eisenoxidnanopartikel synthetisiert werden. Zudem wurden geeignete Methoden zur Formulierung und Sterilisierung etabliert, wodurch zahlreiche Voraussetzungen f{\"u}r eine Anwendung als in vivo-Diagnostikum geschaffen wurden. Weiterhin ist auf Grundlage der MPS-Performance eine hervorragende Eignung dieser Partikel als MPI-Tracer zu erwarten, wodurch die Weiterentwicklung der MPI-Technologie maßgeblich vorangetrieben werden k{\"o}nnte. Die Bestimmung der NMR-Relaxivit{\"a}ten sowie ein initialer in vivo-Versuch zeigten zudem das große Potential der formulierten Nanopartikelsuspensionen als MRT-Kontrastmittel. Die Modifizierung der Partikeloberfl{\"a}che erm{\"o}glicht ferner die Herstellung zielgerichteter Nanopartikel sowie die Markierung von Zellen, wodurch das m{\"o}gliche Anwendungsspektrum maßgeblich erweitert wurde. Im zweiten Teil wurden Partikel durch eine diffusionskontrollierte Kopr{\"a}zipitation im Hydrogel, wobei es sich um eine bioinspirierte Modifikation der klassischen Kopr{\"a}zipitation handelt, synthetisiert, wodurch Partikel mit einer durchschnittlichen Kristallitgr{\"o}ße von 24 nm generiert werden konnten. Die Bestimmung der MPS- und MR-Performance elektrostatisch stabilisierter Partikel ergab vielversprechende Resultate. In Vorbereitung auf die Entwicklung eines in vivo-Diagnostikums wurden die Partikel anschließend erfolgreich sterisch stabilisiert, wodurch der kolloidale Zustand in MilliQ-Wasser {\"u}ber lange Zeit aufrechterhalten werden konnte. Durch Zentrifugation konnten die Partikel zudem erfolgreich in verschiedene Gr{\"o}ßenfraktionen aufgetrennt werden. Dies erm{\"o}glichte die Bestimmung der idealen Aggregatgr{\"o}ße dieses Partikelsystems in Bezug auf die MPS-Performance.}, language = {de} } @phdthesis{Hess2021, author = {Hess, Andreas}, title = {Synthese von funktionalisierbaren und abbaubaren Polymersystemen mit Disulfiden}, school = {Universit{\"a}t Potsdam}, pages = {v, 135}, year = {2021}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Synthese von Disulfiden, der Thiol-Disulfid Metathesereaktion als M{\"o}glichkeit, Polymere zu funktionalisieren, und der Synthese von Polydisulfiden. Im ersten Teil der Arbeit wird die Aminolyse von RAFT-Polymeren und die Abh{\"a}ngigkeit der Polymer-Polymer Disulfidbildung von der Molmasse untersucht. Dabei wurde durch die Aufnahme von Reaktionskinetiken mittels Gel-Permeations-Chromatographie (GPC) festgestellt, dass je l{\"a}nger die Polymerketten sind, desto weniger Disulfid Polymerkopplung tritt auf. RAFT-Polymere werden oft genutzt, um die RAFT-Polymer Endgruppe nach der Polymerisation zu modifizieren oder in einer chemischen Reaktion zu funktionalisieren. Hier kann die Aminolyse in Anwesenheit von kurzkettigen Disulfiden, wie zum Beispiel Cystin, durchgef{\"u}hrt werden, um die Bildung von Polymer-Polymer Disulfiden vollst{\"a}ndig zu unterdr{\"u}cken und ein endgruppenfunktionalisiertes Polymer zu erhalten. Bei dieser Reaktion greift das bei der Aminolyse entstehende Polymerthiolat die kurzkettigen Disulfide an, und es kommt zur Bildung von funktionalisierten Polymeren. Es wurde ein Polyethylenglykoldisulfid eingesetzt, um ein amphiphiles Blockcopolymer zu erhalten. Als RAFT-Polymer wurde Polystyrol (PS) verwendet, und es konnte die Bildung von Polystyrol-Polyethylenglykol Copolymeren nachgewiesen werden. Das amphiphile Polymer bildet im w{\"a}ssrigen Medium Vesikel. Die Oberfl{\"a}che der Vesikel konnte mittels der Thiol-Disulfid Metathese umfunktionalisiert werden. Die Aminolyse von PS RAFT-Polymeren mit einem Polylaktiddisulfid oder einem Polybenzylglutamatdisulfid ergab Polystyrol-block-Polyester und Polystyrol-block-Polyaminos{\"a}uren Copolymere. Im zweiten Teil der Arbeit liegt der Fokus auf der Synthese von Polydisulfiden und ihren thermischen Eigenschaften. Es wurden verschiedene Alkyldithiole synthetisiert und mittels Wasserstoffperoxid und Triethylamin polymerisiert. Dabei konnte gezeigt werden, dass die Polymere teilkristallin sind und dass der Schmelzpunkt und die Kristallinit{\"a}t der Polymere mit steigender Alkylkettenl{\"a}nge zwischen den Disulfidbindungen zunehmen. Die M{\"o}glichkeit einer Polymerkettenerweiterung nach der Polymerisation ist mit diesem System gegeben. Die Abbaubarkeit der Polydisulfide konnte durch den Einsatz von Thiolen im basischen Milieu gezeigt werden.}, language = {de} } @phdthesis{CruzLemus2020, author = {Cruz Lemus, Saul Daniel}, title = {Enhancing Efficiency of Inverted Perovskite Solar Cells}, school = {Universit{\"a}t Potsdam}, pages = {117}, year = {2020}, abstract = {Carbon nitride and poly(ionic liquid)s (PILs) have been successfully applied in various fields of materials science owing to their outstanding properties. This thesis aims at the successful application of these polymers as innovative materials in the interfaces of hybrid organic-inorganic perovskite solar cells. A critical problem in harnessing the full thermodynamic potential of halide perovskites in solar cells is the design and modification of interfaces to reduce carrier recombination. Therefore, the interface must be properly studied and improved. This work investigated the effect of applying carbon nitride and PILs on a perovskite surface on the device performance. The facile synthetic method for modifying carbon nitride with vinyl thiazole and barbituric acid (CMB-vTA) yields 2.3 nm layers when solution processing is performed using isopropanol. The nanosheets were applied as a metal-free electron transport layer in inverted perovskite solar cells. The application of carbon nitride layers (CMB-vTA) resulted in negligible current-voltage hysteresis with a high open circuit voltage (Voc) of 1.1 V and a short-circuit current (Jsc) of 20.28 mA cm-2, which afforded efficiencies of up to 17\%. Thus, the successful implementation of a carbon nitride-based structure enabled good charge extraction with minimized interface recombination between the perovskite and PCBM. Similarly, PILs represent a new strategy of interfacial modification using an ionic polymer in an n-i-p perovskite architecture.. The application of PILs as an interfacial modifier resulted in solar cell devices with an extraordinarily high efficiency of 21.8\% and a Voc of 1.17 V. The implementation reduced non-radiative recombination at the perovskite surface through defect passivation. Finally, our work proposes a novel method to efficiently suppress non-radiative charge recombination using the unexplored properties of carbon nitride and PILs in the solar cell field. Additionally, the method for interfacial modification has general applicability because of the simplicity of the post-treatment approach, and therefore has potential applicability in other solar cells. Thus, this work opens the door to a new class of materials to be implemented.}, language = {en} }