@phdthesis{Dehm2020, author = {Dehm, Daniel}, title = {Development of concepts for the genomic mining of novel secondary metabolites in symbiotic cyanobacteria}, doi = {10.25932/publishup-47834}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-478342}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 122, XII}, year = {2020}, abstract = {Naturstoffe sind seit der goldenen {\"A}ra der Antibiotika von immer gr{\"o}ßerem Interesse, sowohl f{\"u}r die Grundlagenforschung als auch die Angewandten Wissenschaften, da sie die Hauptquelle f{\"u}r neuartige Pharmazeutika mit starken antibiotischen, anti-entz{\"u}ndlichen und Antitumor-Aktivit{\"a}ten darstellen. Neben den technologischen Fortschritten im Bereich der Hochdurchsatz Genomsequenzierung und dem verbesserten Verst{\"a}ndnis des modularen Aufbaus der Biosynthesewege von Sekund{\"a}rmetaboliten, kam es auch zu einem Wechsel vom labor-gest{\"u}tzten Screening aktiver Zellextrakte hin zum Algorithmen-basierten in silico Screening nach neuen Naturstoff-Biosyntheseclustern. Obwohl die steigende Zahl verf{\"u}gbarer Genomsequenzen zeigte, dass nicht-ribosomale Peptid-Synthetasen (NRPS), Polyketid-Synthasen (PKS), und ribosomal synthetisierte und posttranslational modifizierte Peptide (RiPPs) ubiquit{\"a}r in allen Sparten des Lebens gefunden werden k{\"o}nnen, so zeigen einige Phyla wie Actinobakterien oder Cyanobakterien eine besonders hohe Dichte an Sekund{\"a}rmetabolitclustern. Der fakultativ symbiotische, N2-fixierende Modellorganismus N. punctiforme PCC73102 ist ein terrestrisches typ-IV Cyanobakterium, welches nicht nur einen besonders hohen Anteil seines Genoms der Produktion von Sekund{\"a}rmetaboliten widmet, sondern zus{\"a}tzlich noch genetisch modifizierbar ist. Eine AntiSMASH Analyse des Genoms zeigte, dass N. punctiforme insgesamt sechzehn potentielle Sekund{\"a}rmetabolitcluster besitzt, von denen aber bis heute nur zweien ein spezifisches Produkt zugewiesen werden konnte. Das macht N. punctiforme zu einem perfekten Testorganismus f{\"u}r die Entwicklung eines neuartigen kombinatorischen Genomic Mining Ansatzes zur Detektion von bislang unbeschriebenen Naturstoffen. Der neuartige Ansatz, der im Rahmen dieser Studie entwickelt wurde, stellt eine Kombination aus Genomic Mining, unabh{\"a}ngigen Monitoring-Techniken sowie modifizierten Kultivierungsbedingungen dar und f{\"u}hrte nicht nur zu neuen Erkenntnissen im Bereich cyanobakterieller Naturstoffsynthese, sondern letztlich auch zur Entdeckung eines neuen, von N. punctiforme produzierten, Naturstoffs. Die Herstellung und Untersuchung einer Reporterstamm Bibliothek, bestehend aus je einem CFP-produzierenden Transkriptionsreporter f{\"u}r jedes der sechzehn Sekund{\"a}rmetabolitcluster von N. punctiforme, zeigte, dass im Gegensatz zur Erwartung nicht alle Biosynthesecluster f{\"u}r die man kein Produkt nachweisen kann auch nicht exprimiert werden. Stattdessen konnten klar definierbare Expressionsmuster beschrieben werden, was deutlich machte, dass die Naturstoffproduktion einer engen Regulation unterliegt und nur ein kleiner Teil der Biosynthesecluster unter Standardbedingungen tats{\"a}chlich still sind. Dar{\"u}ber hinaus f{\"u}hrte die Erh{\"o}hung der Lichtintensit{\"a}t sowie der Kohlenstoffdioxid-Verf{\"u}gbarkeit zusammen mit der Kultivierung von N. punctiforme zu extrem hohen Zelldichten zu einer starken Erh{\"o}hung der gesamten metabolischen Aktivit{\"a}t des Organismus. N{\"a}here Untersuchungen der Zellextrakte dieser hoch-dichte Kultivierungen f{\"u}hrten letztlich zur Entdeckung einer neuartigen Gruppe von Microviridinen mit verl{\"a}ngerter Peptidsequenz, welche Microviridin N3-N9 genannt wurden. Sowohl die Kultivierung der Transkriptionsreporter als auch die RTqPCR-basierte Untersuchung der Transkriptionslevel der verschiedenen Biosynthesecluster zeigten, dass die hoch-Zelldichte Kultivierung von N. punctiforme zu einer Aktivierung von 50\% der vorhandenen Sekund{\"a}rmetabolitcluster f{\"u}hrt. Im Gegensatz zu dieser sehr breit-gef{\"a}cherten Aktivierung, f{\"u}hrt die Co-Kultivierung von N. punctiforme in chemischen oder physischen Kontakt zu einer N-gehungerten Wirtspflanze (Blasia pusilla) zu einer sehr spezifischen Aktivierung der RIPP4 und RiPP3 Biosynthesecluster. Obwohl dieser Effekt mittels verschiedener unabh{\"a}ngiger Methoden best{\"a}tigt werden konnte und trotz intensiver Analysebem{\"u}hungen, konnte jedoch keinem der beiden Cluster ein Produkt zugeordnet werden. Diese Studie stellt die erste weitreichende, systematische Analyse eines cyanobakteriellen Sekund{\"a}rmetaboloms durch einen kombinatorischen Ansatz aus Genomic Mining und unabh{\"a}ngigen Monitoring-Techniken dar und kann als neue strategische Herangehensweise f{\"u}r die Untersuchung anderer Organismen hinsichtlich ihrer Sekund{\"a}rmetabolit-Produktion dienen. Obwohl es bereits gut beschriebene einzelne Sekund{\"a}rmetabolite gibt, wie beispielweise den Zelldifferenzierungsfaktor PatS in Anabaena sp. PCC7120, so ist der Grad an Regulation der in dieser Studie gezeigt werden konnte bislang beispiellos und die Entschl{\"u}sselung dieser Mechanismen k{\"o}nnte die Entdeckung neuer Naturstoffe stark beschleunigen. Daneben lassen die Ergebnisse aber auch darauf schließen, dass die Induktion der Biosynthesewege nicht das eigentliche Problem darstellt, sondern vielmehr die verl{\"a}ssliche Detektion deren Produkte. Die Erarbeitung neuer Analytik-Strategien k{\"o}nnte somit auch einen deutlichen Einfluss auf die Geschwindigkeit der Entdeckung neuer Naturstoffe haben.}, language = {en} } @phdthesis{Hochrein2017, author = {Hochrein, Lena}, title = {Development of a new DNA-assembly method and its application for the establishment of a red light-sensing regulation system}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404441}, school = {Universit{\"a}t Potsdam}, pages = {146}, year = {2017}, abstract = {In der hier vorgelegten Doktorarbeit wurde eine Strategie zur schnellen, einfachen und zuverl{\"a}ssigen Assemblierung von DNS-Fragmenten, genannt AssemblX, entwickelt. Diese kann genutzt werden, um komplexe DNS-Konstrukte, wie beispielsweise komplette Biosynthesewege, aufzubauen. Dies dient der Produktion von technisch oder medizinisch relevanten Produkten in biotechnologisch nutzbaren Organismen. Die Vorteile der Klonierungsstrategie liegen in der Schnelligkeit der Klonierung, der Flexibilit{\"a}t bez{\"u}glich des Wirtsorganismus, sowie der hohen Effektivit{\"a}t, die durch gezielte Optimierung erreicht wurde. Die entwickelte Technik erlaubt die nahtlose Assemblierung von Genfragmenten und bietet eine Komplettl{\"o}sung von der Software-gest{\"u}tzten Planung bis zur Fertigstellung von DNS-Konstrukten, welche die Gr{\"o}ße von Mini-Chromosomen erreichen k{\"o}nnen. Mit Hilfe der oben beschriebenen AssemblX Strategie wurde eine optogenetische Plattform f{\"u}r die B{\"a}ckerhefe Saccharomyces cerevisiae etabliert. Diese besteht aus einem Rotlicht-sensitiven Photorezeptor und seinem interagierenden Partner aus Arabidopsis thaliana, welche in lichtabh{\"a}ngiger Weise miteinander agieren. Diese Interaktion wurde genutzt, um zwei Rotlicht-aktivierbare Proteine zu erstellen: Einen Transkriptionsfaktor, der nach Applikation eines Lichtpulses die Produktion eines frei w{\"a}hlbaren Proteins stimuliert, sowie eine Cre Rekombinase, die ebenfalls nach Bestrahlung mit einer bestimmten Wellenl{\"a}nge die zufallsbasierte Reorganisation bestimmter DNS-Konstrukte erm{\"o}glicht. Zusammenfassend wurden damit drei Werkzeuge f{\"u}r die synthetische Biologie etabliert. Diese erm{\"o}glichen den Aufbau von komplexen Biosynthesewegen, deren Licht-abh{\"a}ngige Regulation, sowie die zufallsbasierte Rekombination zu Optimierungszwecken.}, language = {en} }