@phdthesis{vanderVeen2021, author = {van der Veen, Iris}, title = {Defining moisture sources and (palaeo)environmental conditions using isotope geochemistry in the NW Himalaya}, doi = {10.25932/publishup-51439}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-514397}, school = {Universit{\"a}t Potsdam}, pages = {152}, year = {2021}, abstract = {Anthropogenic climate change alters the hydrological cycle. While certain areas experience more intense precipitation events, others will experience droughts and increased evaporation, affecting water storage in long-term reservoirs, groundwater, snow, and glaciers. High elevation environments are especially vulnerable to climate change, which will impact the water supply for people living downstream. The Himalaya has been identified as a particularly vulnerable system, with nearly one billion people depending on the runoff in this system as their main water resource. As such, a more refined understanding of spatial and temporal changes in the water cycle in high altitude systems is essential to assess variations in water budgets under different climate change scenarios. However, not only anthropogenic influences have an impact on the hydrological cycle, but changes to the hydrological cycle can occur over geological timescales, which are connected to the interplay between orogenic uplift and climate change. However, their temporal evolution and causes are often difficult to constrain. Using proxies that reflect hydrological changes with an increase in elevation, we can unravel the history of orogenic uplift in mountain ranges and its effect on the climate. In this thesis, stable isotope ratios (expressed as δ2H and δ18O values) of meteoric waters and organic material are combined as tracers of atmospheric and hydrologic processes with remote sensing products to better understand water sources in the Himalayas. In addition, the record of modern climatological conditions based on the compound specific stable isotopes of leaf waxes (δ2Hwax) and brGDGTs (branched Glycerol dialkyl glycerol tetraethers) in modern soils in four Himalayan river catchments was assessed as proxies of the paleoclimate and (paleo-) elevation. Ultimately, hydrological variations over geological timescales were examined using δ13C and δ18O values of soil carbonates and bulk organic matter originating from sedimentological sections from the pre-Siwalik and Siwalik groups to track the response of vegetation and monsoon intensity and seasonality on a timescale of 20 Myr. I find that Rayleigh distillation, with an ISM moisture source, mainly controls the isotopic composition of surface waters in the studied Himalayan catchments. An increase in d-excess in the spring, verified by remote sensing data products, shows the significant impact of runoff from snow-covered and glaciated areas on the surface water isotopic values in the timeseries. In addition, I show that biomarker records such as brGDGTs and δ2Hwax have the potential to record (paleo-) elevation by yielding a significant correlation with the temperature and surface water δ2H values, respectively, as well as with elevation. Comparing the elevation inferred from both brGDGT and δ2Hwax, large differences were found in arid sections of the elevation transects due to an additional effect of evapotranspiration on δ2Hwax. A combined study of these proxies can improve paleoelevation estimates and provide recommendations based on the results found in this study. Ultimately, I infer that the expansion of C4 vegetation between 20 and 1 Myr was not solely dependent on atmospheric pCO2, but also on regional changes in aridity and seasonality from to the stable isotopic signature of the two sedimentary sections in the Himalaya (east and west). This thesis shows that the stable isotope chemistry of surface waters can be applied as a tool to monitor the changing Himalayan water budget under projected increasing temperatures. Minimizing the uncertainties associated with the paleo-elevation reconstructions were assessed by the combination of organic proxies (δ2Hwax and brGDGTs) in Himalayan soil. Stable isotope ratios in bulk soil and soil carbonates showed the evolution of vegetation influenced by the monsoon during the late Miocene, proving that these proxies can be used to record monsoon intensity, seasonality, and the response of vegetation. In conclusion, the use of organic proxies and stable isotope chemistry in the Himalayas has proven to successfully record changes in climate with increasing elevation. The combination of δ2Hwax and brGDGTs as a new proxy provides a more refined understanding of (paleo-)elevation and the influence of climate.}, language = {en} } @phdthesis{Zapata2019, author = {Zapata, Sebastian Henao}, title = {Paleozoic to Pliocene evolution of the Andean retroarc between 26 and 28°S: interactions between tectonics, climate, and upper plate architecture}, doi = {10.25932/publishup-43903}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439036}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2019}, abstract = {Interactions and feedbacks between tectonics, climate, and upper plate architecture control basin geometry, relief, and depositional systems. The Andes is part of a longlived continental margin characterized by multiple tectonic cycles which have strongly modified the Andean upper plate architecture. In the Andean retroarc, spatiotemporal variations in the structure of the upper plate and tectonic regimes have resulted in marked along-strike variations in basin geometry, stratigraphy, deformational style, and mountain belt morphology. These along-strike variations include high-elevation plateaus (Altiplano and Puna) associated with a thin-skin fold-and-thrust-belt and thick-skin deformation in broken foreland basins such as the Santa Barbara system and the Sierras Pampeanas. At the confluence of the Puna Plateau, the Santa Barbara system and the Sierras Pampeanas, major along-strike changes in upper plate architecture, mountain belt morphology, basement exhumation, and deformation style can be recognized. I have used a source to sink approach to unravel the spatiotemporal tectonic evolution of the Andean retroarc between 26 and 28°S. I obtained a large low-temperature thermochronology data set from basement units which includes apatite fission track, apatite U-Th-Sm/He, and zircon U-Th/He (ZHe) cooling ages. Stratigraphic descriptions of Miocene units were temporally constrained by U-Pb LA-ICP-MS zircon ages from interbedded pyroclastic material. Modeled ZHe ages suggest that the basement of the study area was exhumed during the Famatinian orogeny (550-450 Ma), followed by a period of relative tectonic quiescence during the Paleozoic and the Triassic. The basement experienced horst exhumation during the Cretaceous development of the Salta rift. After initial exhumation, deposition of thick Cretaceous syn-rift strata caused reheating of several basement blocks within the Santa Barbara system. During the Eocene-Oligocene, the Andean compressional setting was responsible for the exhumation of several disconnected basement blocks. These exhumed blocks were separated by areas of low relief, in which humid climate and low erosion rates facilitated the development of etchplains on the crystalline basement. The exhumed basement blocks formed an Eocene to Oligocene broken foreland basin in the back-bulge depozone of the Andean foreland. During the Early Miocene, foreland basin strata filled up the preexisting Paleogene topography. The basement blocks in lower relief positions were reheated; associated geothermal gradients were higher than 25°C/km. Miocene volcanism was responsible for lateral variations on the amount of reheating along the Campo-Arenal basin. Around 12 Ma, a new deformational phase modified the drainage network and fragmented the lacustrine system. As deformation and rock uplift continued, the easily eroded sedimentary cover was efficiently removed and reworked by an ephemeral fluvial system, preventing the development of significant relief. After ~6 Ma, the low erodibility of the basement blocks which began to be exposed caused relief increase, leading to the development of stable fluvial systems. Progressive relief development modified atmospheric circulation, creating a rainfall gradient. After 3 Ma, orographic rainfall and high relief lead to the development of proximal fluvial-gravitational depositional systems in the surrounding basins.}, language = {en} } @phdthesis{LauerDuenkelberg2023, author = {Lauer-D{\"u}nkelberg, Gregor}, title = {Extensional deformation and landscape evolution of the Central Andean Plateau}, doi = {10.25932/publishup-61759}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617593}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 195}, year = {2023}, abstract = {Mountain ranges can fundamentally influence the physical and and chemical processes that shape Earths' surface. With elevations of up to several kilometers they create climatic enclaves by interacting with atmospheric circulation and hydrologic systems, thus leading to a specific distribution of flora and fauna. As a result, the interiors of many Cenozoic mountain ranges are characterized by an arid climate, internally drained and sediment-filled basins, as well as unique ecosystems that are isolated from the adjacent humid, low-elevation regions along their flanks and forelands. These high-altitude interiors of orogens are often characterized by low relief and coalesced sedimentary basins, commonly referred to as plateaus, tectono-geomorphic entities that result from the complex interactions between mantle-driven geological and tectonic conditions and superposed atmospheric and hydrological processes. The efficiency of these processes and the fate of orogenic plateaus is therefore closely tied to the balance of constructive and destructive processes - tectonic uplift and erosion, respectively. In numerous geological studies it has been shown that mountain ranges are delicate systems that can be obliterated by an imbalance of these underlying forces. As such, Cenozoic mountain ranges might not persist on long geological timescales and will be destroyed by erosion or tectonic collapse. Advancing headward erosion of river systems that drain the flanks of the orogen may ultimately sever the internal drainage conditions and the maintenance of storage of sediments within the plateau, leading to destruction of plateau morphology and connectivity with the foreland. Orogenic collapse may be associated with the changeover from a compressional stress field with regional shortening and topographic growth, to a tensional stress field with regional extensional deformation and ensuing incision of the plateau. While the latter case is well-expressed by active extensional faults in the interior parts of the Tibetan Plateau and the Himalaya, for example, the former has been attributed to have breached the internally drained areas of the high-elevation sectors of the Iranian Plateau. In the case of the Andes of South America and their internally drained Altiplano-Puna Plateau, signs of both processes have been previously described. However, in the orogenic collapse scenario the nature of the extensional structures had been primarily investigated in the northern and southern terminations of the plateau; in some cases, the extensional faults were even regarded to be inactive. After a shallow earthquake in 2020 within the Eastern Cordillera of Argentina that was associated with extensional deformation, the state of active deformation and the character of the stress field in the central parts of the plateau received renewed interest to explain a series of extensional structures in the northernmost sectors of the plateau in north-western Argentina. This study addresses (1) the issue of tectonic orogenic collapse of the Andes and the destruction of plateau morphology by studying the fill and erosion history of the central eastern Andean Plateau using sedimentological and geochronological data and (2) the kinematics, timing and magnitude of extensional structures that form well-expressed fault scarps in sediments of the regional San Juan del Oro surface, which is an integral part of the Andean Plateau and adjacent morphotectonic provinces to the east. Importantly, sediment properties and depositional ages document that the San Juan del Oro Surface was not part of the internally-drained Andean Plateau, but rather associated with a foreland-directed drainage system, which was modified by the Andean orogeny and that became successively incorporated into the orogen by the eastward-migration of the Andean deformation front during late Miocene - Pliocene time. Structural and geomorphic observations within the plateau indicate that extensional processes must have been repeatedly active between the late Miocene and Holocene supporting the notion of plateau-wide extensional processes, potentially associated with Mw ~ 7 earthquakes. The close relationship between extensional joints and fault orientations underscores that 3 was oriented horizontally in NW-SE direction and 1 was vertical. This unambiguously documents that the observed deformation is related to gravitational forces that drive the orogenic collapse of the plateau. Applied geochronological analyses suggest that normal faulting in the northern Puna was active at about 3 Ma, based on paired cosmogenic nuclide dating of sediment fill units. Possibly due to regional normal faulting the drainage system within the plateau was modified, promoting fluvial incision.}, language = {en} }