@article{SiniSchubertRiskoetal.2018, author = {Sini, Gjergji and Schubert, Marcel and Risko, Chad and Roland, Steffen and Lee, Olivia P. and Chen, Zhihua and Richter, Thomas V. and Dolfen, Daniel and Coropceanu, Veaceslav and Ludwigs, Sabine and Scherf, Ullrich and Facchetti, Antonio and Frechet, Jean M. J. and Neher, Dieter}, title = {On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface}, series = {Advanced energy materials}, volume = {8}, journal = {Advanced energy materials}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201702232}, pages = {15}, year = {2018}, abstract = {Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor-acceptor (D-A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force ( energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules.}, language = {en} } @article{RolandSchubertCollinsetal.2014, author = {Roland, Steffen and Schubert, Marcel and Collins, Brian A. and Kurpiers, Jona and Chen, Zhihua and Facchetti, Antonio and Ade, Harald W. and Neher, Dieter}, title = {Fullerene-free polymer solar cells with highly reduced bimolecular recombination and field-independent charge carrier generation}, series = {The journal of physical chemistry letters}, volume = {5}, journal = {The journal of physical chemistry letters}, number = {16}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz501506z}, pages = {2815 -- 2822}, year = {2014}, abstract = {Photogeneration, recombination, and transport of free charge carriers in all-polymer bulk heterojunction solar cells incorporating poly(3-hexylthiophene) (P3HT) as donor and poly([N,N'-bis(2-octyldodecyl)-naphthelene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)) (P(NDI2OD-T2)) as acceptor polymer have been investigated by the use of time delayed collection field (TDCF) and time-of-flight (TOF) measurements. Depending on the preparation procedure used to dry the active layers, these solar cells comprise high fill factors (FFs) of up to 67\%. A strongly reduced bimolecular recombination (BMR), as well as a field-independent free charge carrier generation are observed, features that are common to high performance fullerene-based solar cells. Resonant soft X-ray measurements (R-SoXS) and photoluminescence quenching experiments (PQE) reveal that the BMR is related to domain purity. Our results elucidate the similarities of this polymeric acceptor with the superior recombination properties of fullerene acceptors.}, language = {en} }