@article{YangZhuWolfetal.2018, author = {Yang, Jie and Zhu, Xiaolei and Wolf, Thomas J. A. and Li, Zheng and Nunes, Jo{\~a}o Pedro Figueira and Coffee, Ryan and Cryan, James P. and G{\"u}hr, Markus and Hegazy, Kareem and Heinz, Tony F. and Jobe, Keith and Li, Renkai and Shen, Xiaozhe and Veccione, Theodore and Weathersby, Stephen and Wilkin, Kyle J. and Yoneda, Charles and Zheng, Qiang and Martinez, Todd J. and Centurion, Martin and Wang, Xijie}, title = {Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction}, series = {Science}, volume = {361}, journal = {Science}, number = {6397}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aat0049}, pages = {64 -- 67}, year = {2018}, abstract = {Conical intersections play a critical role in excited-state dynamics of polyatomic molecules because they govern the reaction pathways of many nonadiabatic processes. However, ultrafast probes have lacked sufficient spatial resolution to image wave-packet trajectories through these intersections directly. Here, we present the simultaneous experimental characterization of one-photon and two-photon excitation channels in isolated CF3I molecules using ultrafast gas-phase electron diffraction. In the two-photon channel, we have mapped out the real-space trajectories of a coherent nuclear wave packet, which bifurcates onto two potential energy surfaces when passing through a conical intersection. In the one-photon channel, we have resolved excitation of both the umbrella and the breathing vibrational modes in the CF3 fragment in multiple nuclear dimensions. These findings benchmark and validate ab initio nonadiabatic dynamics calculations.}, language = {en} } @article{ChenWangWangetal.2014, author = {Chen, Yao and Wang, Guang and Wang, Xiao-yu and Ma, Zheng-lai and Chen, You-peng and Chuai, Manli and von Websky, Karoline and Hocher, Berthold and Yang, Xuesong}, title = {Effects of high salt-exposure on the development of retina and lens in 5.5-Day Chick Embryo}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {34}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, number = {3}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000363044}, pages = {804 -- 817}, year = {2014}, abstract = {Background/Aims: Excess maternal salt intake during pregnancy may alter fetal development. However; our knowledge on how an increased salt intake during pregnancy influences fetal eye development is limited. In this study, we investigated the effects of high salt treatment on the developing eyes in chick embryos, especially focusing on the development of the retina and the lens. Methods: 5.5 day chick embryos were exposed to 280mosm/l (n=17), or 300mosm/l (n=16) NaCl. The treated embryos were then incubated for 96 hours before they were fixed with 4\% paraformaldehyde for H\&E staining, whole mount embryo immunostaining and TUNEL staining. BrdU and PH3 incorporation experiments were performed on the chick embryos after high salt treatment. RT-PCR analyses were conducted from chick retina tissues. Results: We demonstrated that high-salt treatment altered the size of eyes in chick embryos, induced malformation of the eyes and impaired the development of the lens and the retina. We found an impaired expression of Paired box 6 (PAX6) and neuronal cells in the developing retina as revealed by neurofilament immunofluorescent staining. There was a reduction in the number of BrdU-positive cells and PH3-positive cells in the retina, indicating an impaired cell proliferation with high salt treatment. High salt treatment also resulted in an increased number of TUNEL-positive cells in the retina, indicating a higher amount of cell death. RT-PCR data displayed that the expression of the pro-apoptotic molecule nerve growth factor (NGF) in chick retina was increased and CyclinD1 was reduced with high-salt treatment. The size of the lens was reduced and Pax6 expression in the lens was significantly inhibited. High salt treatment was detrimental to the migration of neural crest cells. Conclusion: Taken together; our study demonstrated that high salt exposure of 5.5 day chick embryos led to an impairment of retina and lens development, possibly through interfering with Pax6 expression.}, language = {en} } @article{WangZhangYanetal.2022, author = {Wang, Feipeng and Zhang, Zheng and Yan, Yuyang and Shen, Zijia and Wang, Qiang and Gerhard, Reimund}, title = {Surface reconstruction on electro-spun PVA/PVP nanofibers by water evaporation}, series = {Nanomaterials}, volume = {12}, journal = {Nanomaterials}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano12050797}, pages = {7}, year = {2022}, abstract = {Tailoring the secondary surface morphology of electro-spun nanofibers has been highly desired, as such delicate structures equip nanofibers with distinct functions. Here, we report a simple strategy to directly reconstruct the surface of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) nanofibers by water evaporation. The roughness and diameter of the nanofibers depend on the temperature during vacuum drying. Surface changes of the nanofibers from smooth to rough were observed at 55 degrees C, with a significant drop in nanofiber diameter. We attribute the formation of the secondary surface morphology to the intermolecular forces in the water vapor, including capillary and the compression forces, on the basis of the results from the Fourier-transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy. The strategy is universally effective for various electro-spun polymer nanofibers, thus opening up avenues toward more detailed and sophisticated structure design and implementation for nanofibers.}, language = {en} } @article{WilkinParrishYangetal.2019, author = {Wilkin, Kyle J. and Parrish, Robert M. and Yang, Jie and Wolf, Thomas J. A. and Nunes, J. Pedro F. and G{\"u}hr, Markus and Li, Renkai and Shen, Xiaozhe and Zheng, Qiang and Wang, Xijie and Martinez, Todd J. and Centurion, Martin}, title = {Diffractive imaging of dissociation and ground-state dynamics in a complex molecule}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {100}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.100.023402}, pages = {10}, year = {2019}, abstract = {We have investigated the structural dynamics in photoexcited 1,2-diiodotetrafluoroethane molecules (C2F4I2) in the gas phase experimentally using ultrafast electron diffraction and theoretically using FOMO-CASCI excited-state dynamics simulations. The molecules are excited by an ultraviolet femtosecond laser pulse to a state characterized by a transition from the iodine 5p perpendicular to orbital to a mixed 5p parallel to sigma hole and CF2 center dot antibonding orbital, which results in the cleavage of one of the carbon-iodine bonds. We have observed, with sub-Angstrom resolution, the motion of the nuclear wave packet of the dissociating iodine atom followed by coherent vibrations in the electronic ground state of the C2F4I radical. The radical reaches a stable classical (nonbridged) structure in less than 200 fs.}, language = {en} } @article{TianHuZhangetal.2018, author = {Tian, Guang-Zong and Hu, Jing and Zhang, Heng-Xi and Rademacher, Christoph and Zou, Xiao-Peng and Zheng, Hong-Ning and Xu, Fei and Wang, Xiao-Li and Linker, Torsten and Yin, Jian}, title = {Synthesis and conformational analysis of linear homo- and heterooligomers from novel 2-C-branched sugar amino acids (SAAs)}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-24927-6}, pages = {8}, year = {2018}, abstract = {Sugar amino acids (SAAs), as biologically interesting structures bearing both amino and carboxylic acid functional groups represent an important class of multifunctional building blocks. In this study, we develop an easy access to novel SAAs in only three steps starting from nitro compounds in high yields in analytically pure form, easily available by ceric (IV) mediated radical additions. Such novel SAAs have been applied in the assembly of total nine carbopeptoids with the form of linear homo-and heterooligomers for the structural investigations employing circular dichroism (CD) spectroscopy, which suggest that the carbopeptoids emerge a well-extended, left (or right)-handed conformation similar to polyproline II (PPII) helices. NMR studies also clearly demonstrated the presence of ordered secondary structural elements. 2D-ROESY spectra were acquired to identify i+1NH <-> (C1H)-C-i, (C2H)-C-i correlations which support the conformational analysis of tetramers by CD spectroscopy. These findings provide interesting information of SAAs and their oligomers as potential scaffolds for discovering new drugs and materials.}, language = {en} } @article{AndreeHeywoodSchwanetal.2018, author = {Andree, Kai and Heywood, John S. and Schwan, Mike and Wang, Zheng}, title = {A spatial model of cartel stability}, series = {Bulletin of economic research}, volume = {70}, journal = {Bulletin of economic research}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0307-3378}, doi = {10.1111/boer.12149}, pages = {298 -- 311}, year = {2018}, abstract = {We uniquely introduce convex production costs into a cartel model involving spatial price discrimination. We demonstrate that greater convexity improves cartel stability and that for sufficient convexity first best locations will be adopted. We show that allowing locations to vary over the game reduces cartel stability but that greater convexity continues to improve that stability. Moreover, when the degree of convexity does not support the first best collusive locations, other collusive locations exist that require less stability and these may either increase or decrease social welfare relative to competition. Critically, these locations that require less stability are more dispersed in sharp contrast to the known result assuming linear production costs.}, language = {en} } @article{WolfSanchezYangetal.2019, author = {Wolf, Thomas J. A. and Sanchez, David M. and Yang, J. and Parrish, R. M. and Nunes, J. P. F. and Centurion, M. and Coffee, R. and Cryan, J. P. and G{\"u}hr, Markus and Hegazy, Kareem and Kirrander, Adam and Li, R. K. and Ruddock, J. and Shen, Xiaozhe and Vecchione, T. and Weathersby, S. P. and Weber, Peter M. and Wilkin, K. and Yong, Haiwang and Zheng, Q. and Wang, X. J. and Minitti, Michael P. and Martinez, Todd J.}, title = {The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction}, series = {Nature chemistry}, volume = {11}, journal = {Nature chemistry}, number = {6}, publisher = {Nature Publ. Group}, address = {London}, issn = {1755-4330}, doi = {10.1038/s41557-019-0252-7}, pages = {504 -- 509}, year = {2019}, abstract = {The ultrafast photoinduced ring-opening of 1,3-cyclohexadiene constitutes a textbook example of electrocyclic reactions in organic chemistry and a model for photobiological reactions in vitamin D synthesis. Although the relaxation from the photoexcited electronic state during the ring-opening has been investigated in numerous studies, the accompanying changes in atomic distance have not been resolved. Here we present a direct and unambiguous observation of the ring-opening reaction path on the femtosecond timescale and subangstrom length scale using megaelectronvolt ultrafast electron diffraction. We followed the carbon-carbon bond dissociation and the structural opening of the 1,3-cyclohexadiene ring by the direct measurement of time-dependent changes in the distribution of interatomic distances. We observed a substantial acceleration of the ring-opening motion after internal conversion to the ground state due to a steepening of the electronic potential gradient towards the product minima. The ring-opening motion transforms into rotation of the terminal ethylene groups in the photoproduct 1,3,5-hexatriene on the subpicosecond timescale.}, language = {en} } @article{LuChengWangetal.2017, author = {Lu, Honghua and Cheng, Lu and Wang, Zhen and Zhang, Tianqi and Lu, Yanwu and Zhao, Junxiang and Li, Youli and Zheng, Xiangmin}, title = {Latest Quaternary rapid river incision across an inactive fold in the northern Chinese Tian Shan foreland}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {179}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.10.017}, pages = {167 -- 181}, year = {2017}, abstract = {This work focuses on the incision process over the Tuostai anticline, a fold of the proximal structure Belt I in the northern Chinese Tian Shan foreland, where the Sikeshu River has incised deeply into the alluvial gravels and the fold's underlying bedrock strata. Field investigation and geomorphic mapping define five terraces of the Sikeshu River (designated as T1 to T5 from oldest to youngest) preserved within the Tuostai anticline. 10Be surface exposure dating and optically stimulated luminescence dating constrain stabilization of the highest three terrace surfaces at about 80 ka (T1), 16 ka (T2), and 15 ka (T3), respectively. Around 16 ka, the calculated river incision rates significantly increase from <2 mm/yr to >6 mm/yr. Undeformed longitudinal profiles of terraces T2, T3 and T4 over the Tuostai anticline suggest that this structure may have been tectonically inactive since stabilization of these three terraces. We thus think that the observed rapid river incision over the Tuostai anticline has not been largely forced by tectonic uplift. Instead, the progressively warmer and wetter palaeoclimatic condition within the Tian Shan range and its surrounding area during the period of ∼20-10 ka may have enhanced river incision across the Tuostai anticline. A reduced sediment/water ratio might have lowered the gradient of the Sikeshu River.}, language = {en} } @article{TangSullivanHongetal.2019, author = {Tang, Alan T. and Sullivan, Katie Rose and Hong, Courtney C. and Goddard, Lauren M. and Mahadevan, Aparna and Ren, Aileen and Pardo, Heidy and Peiper, Amy and Griffin, Erin and Tanes, Ceylan and Mattei, Lisa M. and Yang, Jisheng and Li, Li and Mericko-Ishizuka, Patricia and Shen, Le and Hobson, Nicholas and Girard, Romuald and Lightle, Rhonda and Moore, Thomas and Shenkar, Robert and Polster, Sean P. and Roedel, Claudia Jasmin and Li, Ning and Zhu, Qin and Whitehead, Kevin J. and Zheng, Xiangjian and Akers, Amy and Morrison, Leslie and Kim, Helen and Bittinger, Kyle and Lengner, Christopher J. and Schwaninger, Markus and Velcich, Anna and Augenlicht, Leonard and Abdelilah-Seyfried, Salim and Min, Wang and Marchuk, Douglas A. and Awad, Issam A. and Kahn, Mark L.}, title = {Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation}, series = {Science Translational Medicine}, volume = {11}, journal = {Science Translational Medicine}, number = {520}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {1946-6234}, doi = {10.1126/scitranslmed.aaw3521}, pages = {14}, year = {2019}, abstract = {Cerebral cavernous malformation (CCM) is a genetic, cerebrovascular disease. Familial CCM is caused by genetic mutations in KRIT1, CCM2, or PDCD10. Disease onset is earlier and more severe in individuals with PDCD10 mutations. Recent studies have shown that lesions arise from excess mitogen-activated protein kinase kinase kinase 3 (MEKK3) signaling downstream of Toll-like receptor 4 (TLR4) stimulation by lipopolysaccharide derived from the gut microbiome. These findings suggest a gut-brain CCM disease axis but fail to define it or explain the poor prognosis of patients with PDCD10 mutations. Here, we demonstrate that the gut barrier is a primary determinant of CCM disease course, independent of microbiome configuration, that explains the increased severity of CCM disease associated with PDCD10 deficiency. Chemical disruption of the gut barrier with dextran sulfate sodium augments CCM formation in a mouse model, as does genetic loss of Pdcd10, but not Krit1, in gut epithelial cells. Loss of gut epithelial Pdcd10 results in disruption of the colonic mucosal barrier. Accordingly, loss of Mucin-2 or exposure to dietary emulsifiers that reduce the mucus barrier increases CCM burden analogous to loss of Pdcd10 in the gut epithelium. Last, we show that treatment with dexamethasone potently inhibits CCM formation in mice because of the combined effect of action at both brain endothelial cells and gut epithelial cells. These studies define a gut-brain disease axis in an experimental model of CCM in which a single gene is required for two critical components: gut epithelial function and brain endothelial signaling.}, language = {en} } @article{ChengvandenBerghZengetal.2013, author = {Cheng, Shifeng and van den Bergh, Erik and Zeng, Peng and Zhong, Xiao and Xu, Jiajia and Liu, Xin and Hofberger, Johannes and de Bruijn, Suzanne and Bhide, Amey S. and Kuelahoglu, Canan and Bian, Chao and Chen, Jing and Fan, Guangyi and Kaufmann, Kerstin and Hall, Jocelyn C. and Becker, Annette and Br{\"a}utigam, Andrea and Weber, Andreas P. M. and Shi, Chengcheng and Zheng, Zhijun and Li, Wujiao and Lv, Mingju and Tao, Yimin and Wang, Junyi and Zou, Hongfeng and Quan, Zhiwu and Hibberd, Julian M. and Zhang, Gengyun and Zhu, Xin-Guang and Xu, Xun and Schranz, M. Eric}, title = {The Tarenaya hassleriana Genome Provides insight Into Reproductive Trait and Genome Evolution of Crucifers}, series = {The plant cell}, volume = {25}, journal = {The plant cell}, number = {8}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.113.113480}, pages = {2813 -- 2830}, year = {2013}, abstract = {The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is essential for inferring directionality of evolutionary change has been lacking. We therefore sequenced the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae. By comparative analysis of the two lineages, we show that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits. We found an ancient genome triplication in Tarenaya (Th-alpha) that is independent of the Brassicaceae-specific duplication (At-alpha) and nested Brassica (Br-a) triplication. To showcase the potential of sister lineage genome analysis, we investigated the state of floral developmental genes and show Brassica retains twice as many floral MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR) genes as Tarenaya that likely contribute to morphological diversity in Brassica. We also performed synteny analysis of gene families that confer self-incompatibility in Brassicaceae and found that the critical SERINE RECEPTOR KINASE receptor gene is derived from a lineage-specific tandem duplication. The T. hassleriana genome will facilitate future research toward elucidating the evolutionary history of Brassicaceae genomes.}, language = {en} } @article{HerzschuhCaoLaeppleetal.2019, author = {Herzschuh, Ulrike and Cao, Xianyong and Laepple, Thomas and Dallmeyer, Anne and Telford, Richard J. and Ni, Jian and Chen, Fahu and Kong, Zhaochen and Liu, Guangxiu and Liu, Kam-Biu and Liu, Xingqi and Stebich, Martina and Tang, Lingyu and Tian, Fang and Wang, Yongbo and Wischnewski, Juliane and Xu, Qinghai and Yan, Shun and Yang, Zhenjing and Yu, Ge and Zhang, Yun and Zhao, Yan and Zheng, Zhuo}, title = {Position and orientation of the westerly jet determined Holocene rainfall patterns in China}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-09866-8}, pages = {8}, year = {2019}, abstract = {Proxy-based reconstructions and modeling of Holocene spatiotemporal precipitation patterns for China and Mongolia have hitherto yielded contradictory results indicating that the basic mechanisms behind the East Asian Summer Monsoon and its interaction with the westerly jet stream remain poorly understood. We present quantitative reconstructions of Holocene precipitation derived from 101 fossil pollen records and analyse them with the help of a minimal empirical model. We show that the westerly jet-stream axis shifted gradually southward and became less tilted since the middle Holocene. This was tracked by the summer monsoon rain band resulting in an early-Holocene precipitation maximum over most of western China, a mid-Holocene maximum in north-central and northeastern China, and a late-Holocene maximum in southeastern China. Our results suggest that a correct simulation of the orientation and position of the westerly jet stream is crucial to the reliable prediction of precipitation patterns in China and Mongolia.}, language = {en} }