@article{ZhangGuoTangetal.2019, author = {Zhang, Su-Yun and Guo, Wen-Bin and Tang, Ying-Ying and Xu, Jin-Qiu and He, Zhang-Zhen}, title = {Observation of Spin Relaxation in a Vanadate Chloride with Quasi-One-Dimensional Linear Chain}, series = {Crystal growth \& design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials}, volume = {19}, journal = {Crystal growth \& design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {1528-7483}, doi = {10.1021/acs.cgd.8b01839}, pages = {2228 -- 2234}, year = {2019}, abstract = {A new cobalt(II) vanadate chloride, Pb2Co(OH)(V2O7)Cl, has been synthesized under mild hydrothermal conditions. It contains quasi-one-dimensional (1D) linear chains built by edge-sharing of (CoO6)-O-II octahedra. The cobalt(II) oxide chains are further interconnected by (V2O7)(4-) dimers into a three-dimensional (3D) anionic framework with Pb2+ and Cl- ions residing in Co4V8 12-member ring tunnels. The intrachain Co center dot center dot center dot Co distance is 3.041 angstrom, while the interchain distances are 8.742 and 9.256 angstrom. Magnetic measurements suggest the ferromagnetic intrachain and the antiferromagnetic interchain interactions with a specific value of J(intra)/J(inter) = 1.7 x 10(3). Zero-field heat capacity demonstrates the magnetic long-range ordering at 5.5 K. Alternating current (AC) magnetic susceptibility under zero external direct current (DC) fields displays two slow magnetic relaxations at low temperatures, giving characteristic relaxations (tau(0)) of 1.2(3) x 10(-12) and 1.9(4) x 10(-10) s with effective energy barriers (Delta(r)) of 76.1(2) and 48.4(5) K. The energy barrier between the spin up and spin-down states can be ascribed to the ferromagnetic spin chain and the Ising-like magnetic anisotropy in Pb2Co(OH)(V2O7)Cl.}, language = {en} } @article{HuChengXuetal.2021, author = {Hu, Ting-Li and Cheng, Feng and Xu, Zhen and Chen, Zhong-Zheng and Yu, Lei and Ban, Qian and Li, Chun-Lin and Pan, Tao and Zhang, Bao-Wei}, title = {Molecular and morphological evidence for a new species of the genus Typhlomys (Rodentia: Platacanthomyidae)}, series = {Zoological research : ZR = Dongwuxue-yanjiu : jikan / published by Kunming Institute of Zoology, Chinese Academy of Sciences, Zhongguo Kexueyuan Kunming Dongwu Yanjiusuo zhuban, Dongwuxue-yanjiu Bianji Weiyuanhui bianji}, volume = {42}, journal = {Zoological research : ZR = Dongwuxue-yanjiu : jikan / published by Kunming Institute of Zoology, Chinese Academy of Sciences, Zhongguo Kexueyuan Kunming Dongwu Yanjiusuo zhuban, Dongwuxue-yanjiu Bianji Weiyuanhui bianji}, number = {1}, publisher = {Yunnan Renmin Chubanshe}, address = {Kunming}, issn = {2095-8137}, doi = {10.24272/j.issn.2095-8137.2020.132}, pages = {100 -- 107}, year = {2021}, abstract = {In this study, we reassessed the taxonomic position of Typhlomys (Rodentia: Platacanthomyidae) from Huangshan, Anhui, China, based on morphological and molecular evidence. Results suggested that Typhlomys is comprised of up to six species, including four currently recognized species ( Typhlomys cinereus, T. chapensis, T. daloushanensis, and T. nanus), one unconfirmed candidate species, and one new species ( Typhlomys huangshanensis sp. nov.). Morphological analyses further supported the designation of the Huangshan specimens found at mid-elevations in the southern Huangshan Mountains (600 m to 1 200 m a.s.l.) as a new species.}, language = {en} }