@misc{ShanGuanHubaceketal.2018, author = {Shan, Yuli and Guan, Dabo and Hubacek, Klaus and Zheng, Bo and Davis, Steven J. and Jia, Lichao and Liu, Jianghua and Liu, Zhu and Fromer, Neil and Mi, Zhifu and Meng, Jing and Deng, Xiangzheng and Li, Yuan and Lin, Jintai and Schroeder, Heike and Weisz, Helga and Schellnhuber, Hans Joachim}, title = {City-level climate change mitigation in China}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1096}, issn = {1866-8372}, doi = {10.25932/publishup-47154}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471541}, pages = {18}, year = {2018}, abstract = {As national efforts to reduce CO2 emissions intensify, policy-makers need increasingly specific, subnational information about the sources of CO2 and the potential reductions and economic implications of different possible policies. This is particularly true in China, a large and economically diverse country that has rapidly industrialized and urbanized and that has pledged under the Paris Agreement that its emissions will peak by 2030. We present new, city level estimates of CO2 emissions for 182 Chinese cities, decomposed into 17 different fossil fuels, 46 socioeconomic sectors, and 7 industrial processes. We find that more affluent cities have systematically lower emissions per unit of gross domestic product (GDP), supported by imports from less affluent, industrial cities located nearby. In turn, clusters of industrial cities are supported by nearby centers of coal or oil extraction. Whereas policies directly targeting manufacturing and electric power infrastructure would drastically undermine the GDP of industrial cities, consumption based policies might allow emission reductions to be subsidized by those with greater ability to pay. In particular, sector based analysis of each city suggests that technological improvements could be a practical and effective means of reducing emissions while maintaining growth and the current economic structure and energy system. We explore city-level emission reductions under three scenarios of technological progress to show that substantial reductions (up to 31\%) are possible by updating a disproportionately small fraction of existing infrastructure.}, language = {en} } @article{RenzOttenFaurobertetal.2015, author = {Renz, Marc and Otten, Cecile and Faurobert, Eva and Rudolph, Franziska and Zhu, Yuan and Boulday, Gwenola and Duchene, Johan and Mickoleit, Michaela and Dietrich, Ann-Christin and Ramspacher, Caroline and Steed, Emily and Manet-Dupe, Sandra and Benz, Alexander and Hassel, David and Vermot, Julien and Huisken, Jan and Tournier-Lasserve, Elisabeth and Felbor, Ute and Sure, Ulrich and Albiges-Rizo, Corinne and Abdelilah-Seyfried, Salim}, title = {Regulation of beta 1 Integrin-Klf2-Mediated angiogenesis by CCM proteins}, series = {Developmental cell}, volume = {32}, journal = {Developmental cell}, number = {2}, publisher = {Cell Press}, address = {Cambridge}, issn = {1534-5807}, doi = {10.1016/j.devcel.2014.12.016}, pages = {181 -- 190}, year = {2015}, abstract = {Mechanotransduction pathways are activated in response to biophysical stimuli during the development or homeostasis of organs and tissues. In zebrafish, the blood-flow-sensitive transcription factor Klf2a promotes VEGF-dependent angiogenesis. However, the means by which the Klf2a mechanotransduction pathway is regulated to prevent continuous angiogenesis remain unknown. Here we report that the upregulation of klf2 mRNA causes enhanced egfl7 expression and angiogenesis signaling, which underlies cardiovascular defects associated with the loss of cerebral cavernous malformation (CCM) proteins in the zebrafish embryo. Using CCM-protein-depleted human umbilical vein endothelial cells, we show that the misexpression of KLF2 mRNA requires the extracellular matrix-binding receptor beta 1 integrin and occurs in the absence of blood flow. Downregulation of beta 1 integrin rescues ccm mutant cardiovascular malformations in zebrafish. Our work reveals a beta 1 integrin-Klf2-Egfl7-signaling pathway that is tightly regulated by CCM proteins. This regulation prevents angiogenic overgrowth and ensures the quiescence of endothelial cells.}, language = {en} }