@misc{YangDarkoHuangetal.2017, author = {Yang, Xiaoping and Darko, Kwame Oteng and Huang, Yanjun and He, Caimei and Yang, Huansheng and He, Shanping and Li, Jianzhong and Li, Jian and Hocher, Berthold and Yin, Yulong}, title = {Resistant starch regulates gut microbiota}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {42}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, number = {1}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000477386}, pages = {306 -- 318}, year = {2017}, abstract = {Starch is one of the most popular nutritional sources for both human and animals. Due to the variation of its nutritional traits and biochemical specificities, starch has been classified into rapidly digestible, slowly digestible and resistant starch. Resistant starch has its own unique chemical structure, and various forms of resistant starch are commercially available. It has been found being a multiple-functional regulator for treating metabolic dysfunction. Different functions of resistant starch such as modulation of the gut microbiota, gut peptides, circulating growth factors, circulating inflammatory mediators have been characterized by animal studies and clinical trials. In this mini-review, recent remarkable progress in resistant starch on gut microbiota, particularly the effect of structure, biochemistry and cell signaling on nutrition has been summarized, with highlights on its regulatory effect on gut microbiota.}, language = {en} } @unpublished{WeskeYangMaglio2012, author = {Weske, Mathias and Yang, Jian and Maglio, Paul P.}, title = {Special issue service oriented computing (ICSOC) guest editors' introduction}, series = {International journal of cooperative information systems}, volume = {21}, journal = {International journal of cooperative information systems}, number = {1}, publisher = {World Scientific}, address = {Singapore}, issn = {0218-8430}, doi = {10.1142/S0218843012020017}, pages = {1 -- 2}, year = {2012}, language = {en} } @article{YangLaiDengetal.2014, author = {Yang, Fang and Lai, Xinlong and Deng, Li and Liu, Xiaoxiao and Li, Jian and Zeng, Shuixiu and Zhang, Cheng and Hocher, Carl-Friedrich and Hocher, Berthold}, title = {Association of endothelin-1 gene polymorphisms with the clinical phenotype in primary nephrotic syndrome of children}, series = {Life sciences : molecular, cellular and functional basis of therapy}, volume = {118}, journal = {Life sciences : molecular, cellular and functional basis of therapy}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0024-3205}, doi = {10.1016/j.lfs.2014.04.010}, pages = {446 -- 450}, year = {2014}, abstract = {Aims:This study aims to investigate the relationship between plasma endothelin-1 (ET-1) concentrations, ET-1 gene polymorphisms in loci rs5370, rs1630736, 3A/4A and clinical features of primary nephrotic syndrome (NS) in children. Materials and methods: Thirty-six children with primary NS were selected as case group, and 94 healthy children were selected as control group. All subjects were genotyped for three single nucleotide polymorphisms (SNPs) (rs5370, rs10478694 [3A4A) and rs 1630736) in the ET-1 gene by gene sequencing. The plasma ET-1 concentrations were measured using a radio-immunoassay. Key findings: Plasma ET-1 concentrations were higher in NS patients (P = 0.007) as compared to healthy children. The allele frequencies between control and NS patients were significantly different only with respect to the rs10478694 SNP of the ET-1 gene. The allele frequencies between control and NS patients for the rs5370 SNP showed a trend towards difference (P = 0.057). Plasma cholesterol in NS patients is associated with both: the Cl genotype in locus rs5370 and the 3A4A genotype in locus rs10478694 (P < 0.05 in both cases). Significance: The ET systems might play a disease modifying role in pediatric NS. Plasma cholesterol, a hallmark of NS. seems to be associated with genetic variations within the human ET-1 gene. (C) 2014 Elsevier Inc. All rights reserved.}, language = {en} } @misc{LiTsuprykovYangetal.2016, author = {Li, Jian and Tsuprykov, Oleg and Yang, Xiaoping and Hocher, Berthold}, title = {Paternal programming of offspring cardiometabolic diseases in later life}, series = {Journal of hypertension}, volume = {34}, journal = {Journal of hypertension}, publisher = {Wiley-Blackwell}, address = {Philadelphia}, issn = {0263-6352}, doi = {10.1097/HJH.0000000000001051}, pages = {2111 -- 2126}, year = {2016}, language = {en} } @article{HerzschuhCaoLaeppleetal.2019, author = {Herzschuh, Ulrike and Cao, Xianyong and Laepple, Thomas and Dallmeyer, Anne and Telford, Richard J. and Ni, Jian and Chen, Fahu and Kong, Zhaochen and Liu, Guangxiu and Liu, Kam-Biu and Liu, Xingqi and Stebich, Martina and Tang, Lingyu and Tian, Fang and Wang, Yongbo and Wischnewski, Juliane and Xu, Qinghai and Yan, Shun and Yang, Zhenjing and Yu, Ge and Zhang, Yun and Zhao, Yan and Zheng, Zhuo}, title = {Position and orientation of the westerly jet determined Holocene rainfall patterns in China}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-09866-8}, pages = {8}, year = {2019}, abstract = {Proxy-based reconstructions and modeling of Holocene spatiotemporal precipitation patterns for China and Mongolia have hitherto yielded contradictory results indicating that the basic mechanisms behind the East Asian Summer Monsoon and its interaction with the westerly jet stream remain poorly understood. We present quantitative reconstructions of Holocene precipitation derived from 101 fossil pollen records and analyse them with the help of a minimal empirical model. We show that the westerly jet-stream axis shifted gradually southward and became less tilted since the middle Holocene. This was tracked by the summer monsoon rain band resulting in an early-Holocene precipitation maximum over most of western China, a mid-Holocene maximum in north-central and northeastern China, and a late-Holocene maximum in southeastern China. Our results suggest that a correct simulation of the orientation and position of the westerly jet stream is crucial to the reliable prediction of precipitation patterns in China and Mongolia.}, language = {en} } @article{JiaAnslanChenetal.2022, author = {Jia, Weihan and Anslan, Sten and Chen, Fahu and Cao, Xianyong and Dong, Hailiang and Dulias, Katharina and Gu, Zhengquan and Heinecke, Liv and Jiang, Hongchen and Kruse, Stefan and Kang, Wengang and Li, Kai and Liu, Sisi and Liu, Xingqi and Liu, Ying and Ni, Jian and Schwalb, Antje and Stoof-Leichsenring, Kathleen R. and Shen, Wei and Tian, Fang and Wang, Jing and Wang, Yongbo and Wang, Yucheng and Xu, Hai and Yang, Xiaoyan and Zhang, Dongju and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {293}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107703}, pages = {14}, year = {2022}, abstract = {Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era.}, language = {en} }