@article{ZhaoXiaWuetal.2018, author = {Zhao, Liming and Xia, Yan and Wu, Xiao-Yuan and Schippers, Jos H. M. and Jing, Hai-Chun}, title = {Phenotypic analysis and molecular markers of leaf senescence}, series = {Plant Senescence: Methods and Protocols}, volume = {1744}, journal = {Plant Senescence: Methods and Protocols}, publisher = {Humana Press Inc.}, address = {Totowa}, isbn = {978-1-4939-7672-0}, issn = {1064-3745}, doi = {10.1007/978-1-4939-7672-0_3}, pages = {35 -- 48}, year = {2018}, abstract = {The process of leaf senescence consists of the final stage of leaf development. It has evolved as a mechanism to degrade macromolecules and micronutrients and remobilize them to other developing parts of the plant; hence it plays a central role for the survival of plants and crop production. During senescence, a range of physiological, morphological, cellular, and molecular events occur, which are generally referred to as the senescence syndrome that includes several hallmarks such as visible yellowing, loss of chlorophyll and water content, increase of ion leakage and cell death, deformation of chloroplast and cell structure, as well as the upregulation of thousands of so-called senescence-associated genes (SAGs) and downregulation of photosynthesis-associated genes (PAGs). This chapter is devoted to methods characterizing the onset and progression of leaf senescence at the morphological, physiological, cellular, and molecular levels. Leaf senescence normally progresses in an age-dependent manner but is also induced prematurely by a variety of environmental stresses in plants. Focused on the hallmarks of the senescence syndrome, a series of protocols is described to asses quantitatively the senescence process caused by developmental cues or environmental perturbations. We first briefly describe the senescence process, the events associated with the senescence syndrome, and the theories and methods to phenotype senescence. Detailed protocols for monitoring senescence in planta and in vitro, using the whole plant and the detached leaf, respectively, are presented. For convenience, most of the protocols use the model plant species Arabidopsis and rice, but they can be easily extended to other plants.}, language = {en} } @article{WangWangWangetal.2016, author = {Wang, Hao and Wang, Xue-jiang and Wang, Wei-shi and Yan, Xiang-bo and Xia, Peng and Chen, Jie and Zhao, Jian-fu}, title = {Modeling and optimization of struvite recovery from wastewater and reusing for heavy metals immobilization in contaminated soil}, series = {Journal of chemical technology \& biotechnology}, volume = {91}, journal = {Journal of chemical technology \& biotechnology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0268-2575}, doi = {10.1002/jctb.4931}, pages = {3045 -- 3052}, year = {2016}, abstract = {BACKROUND: Few studies have been carried out to connect nutrients recovery from wastewater and heavy metals immobilization in contaminated soil. To achieve the goal, ammonia nitrogen (AN) and phosphorus (P) were recovered from rare-earth wastewater by using the formation of struvite, which was used as the amendment with plant ash for copper, lead and chromium immobilization. RESULTS: AN removal efficiency and residual P reached 95.32 +/- 0.73\% and 6.14 +/- 1.72mgL(-1) under optimal conditions: pH= 9.0, n(Mg): n(N): n(P)= 1.2: 1: 1.1, which were obtained using response surface methodology (RSM). The minimum available concentrations of Cu, Pb and Cr (CPC) separately reduced to 320.82 mg kg(-1), 190.77 mg kg(-1) and 121.46 mg kg(-1) with increasing immobilization time at the mass ratio of phosphate precipitate (PP)/plant ash (PA) of 1: 3. Humic acid (HA) and fulvic acid (FA) were beneficial to immobilize Cu, both of which showed no effect or even a negative effect on Pb and Cr immobilization.}, language = {en} }