@article{WuttkeLiLietal.2019, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B. and Feitosa, Mary F. and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y. and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O. and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and Van der Most, Peter J. and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer Singh and Almgren, Peter and Amin, Najaf and Arnlov, Johan and Bakker, Stephan J. L. and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L. and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and B{\"o}ttinger, Erwin and Boutin, Thibaud S. and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S. and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Mickael and Carroll, Robert J. and Catamo, Eulalia and Chambers, John C. and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P. and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E. Warwick and De Borst, Martin H. and De Grandi, Alessandro and De Mutsert, Renee and De Vries, Aiko P. J. and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K. and Felix, Janine F. and Foo, Valencia Hui Xian and Franco, Oscar H. and Franke, Andre and Freedman, Barry I. and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T. and Gao, He and Gasparini, Paolo and Gaziano, J. Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and Gogele, Martin and Gordon, Scott D. and Gudbjartsson, Daniel F. and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B. and Hartman, Catharina A. and Hayward, Caroline and Hellwege, Jacklyn N. and Heng, Chew-Kiat and Hicks, Andrew A. and Hofer, Edith and Huang, Wei and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Indridason, Olafur S. and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W. V. and Jakobsdottir, Johanna and Jonas, Jost B. and Joshi, Peter K. and Josyula, Navya Shilpa and Jung, Bettina and Kahonen, Mika and Kamatani, Yoichiro and Kammerer, Candace M. and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M. and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E. and Koenig, Wolfgang and Kooner, Jaspal S. and Korner, Antje and Kovacs, Peter and Kraja, Aldi T. and Krajcoviechova, Alena and Kramer, Holly and Kramer, Bernhard K. and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A. and Langefeld, Carl D. and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtimaki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M. and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J. F. and Lucae, Susanne and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Magi, Reedik and Magnusson, Patrik K. E. and Mahajan, Anubha and Martin, Nicholas G. and Martins, Jade and Marz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K. and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P. and Program, V. A. Million Veteran and Mohlke, Karen L. and Mononen, Nina and Montgomery, Grant W. and Mook-Kanamori, Dennis O. and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nalls, Mike A. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and Noordam, Raymond and Olafsson, Isleifur and Oldehinkel, Albertine J. and Orho-Melander, Marju and Ouwehand, Willem H. and Padmanabhan, Sandosh and Palmer, Nicholette D. and Palsson, Runolfur and Penninx, Brenda W. J. H. and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I. and Polasek, Ozren and Ponte, Belen and Porteous, David J. and Poulain, Tanja and Pramstaller, Peter P. and Preuss, Michael H. and Prins, Bram P. and Province, Michael A. and Rabelink, Ton J. and Raffield, Laura M. and Raitakari, Olli T. and Reilly, Dermot F. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Ridker, Paul M. and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J. and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A. and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Ben Schottker, and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M. and Shi, Yuan and Smith, Albert V. and Smith, Blair H. and Soranzo, Nicole and Spracklen, Cassandra N. and Strauch, Konstantin and Stringham, Heather M. and Stumvoll, Michael and Svensson, Per O. and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M. and Tan, Nicholas Y. Q. and Taylor, Kent D. and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H. L. and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and Tonjes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andre G. and Vaccargiu, Simona and Van Dam, Rob M. and Van der Harst, Pim and Van Duijn, Cornelia M. and Edward, Digna R. Velez and Verweij, Niek and Vogelezang, Suzanne and Volker, Uwe and Vollenweider, Peter and Waeber, Gerard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M. and Bin Wei, Wen and White, Harvey and Whitfield, John B. and Wild, Sarah H. and Wilson, James F. and Wojczynski, Mary K. and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Weihua and Zonderman, Alan B. and Rotter, Jerome I. and Bochud, Murielle and Psaty, Bruce M. and Vitart, Veronique and Wilson, James G. and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I. and Ho, Kevin and Morris, Andrew P. and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A. and Sim, Xueling and Boger, Carsten A. and Okada, Yukinori and Edwards, Todd L. and Snieder, Harold and Stefansson, Kari and Hung, Adriana M. and Heid, Iris M. and Scholz, Markus and Teumer, Alexander and Kottgen, Anna and Pattaro, Cristian}, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {6}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Lifelines COHort Study}, issn = {1061-4036}, doi = {10.1038/s41588-019-0407-x}, pages = {957 -- +}, year = {2019}, abstract = {Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.}, language = {en} } @article{JiaAnslanChenetal.2022, author = {Jia, Weihan and Anslan, Sten and Chen, Fahu and Cao, Xianyong and Dong, Hailiang and Dulias, Katharina and Gu, Zhengquan and Heinecke, Liv and Jiang, Hongchen and Kruse, Stefan and Kang, Wengang and Li, Kai and Liu, Sisi and Liu, Xingqi and Liu, Ying and Ni, Jian and Schwalb, Antje and Stoof-Leichsenring, Kathleen R. and Shen, Wei and Tian, Fang and Wang, Jing and Wang, Yongbo and Wang, Yucheng and Xu, Hai and Yang, Xiaoyan and Zhang, Dongju and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {293}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107703}, pages = {14}, year = {2022}, abstract = {Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era.}, language = {en} } @article{MiddeldorpMahajanHorikoshietal.2019, author = {Middeldorp, Christel M. and Mahajan, Anubha and Horikoshi, Momoko and Robertson, Neil R. and Beaumont, Robin N. and Bradfield, Jonathan P. and Bustamante, Mariona and Cousminer, Diana L. and Day, Felix R. and De Silva, N. Maneka and Guxens, Monica and Mook-Kanamori, Dennis O. and St Pourcain, Beate and Warrington, Nicole M. and Adair, Linda S. and Ahlqvist, Emma and Ahluwalia, Tarunveer Singh and Almgren, Peter and Ang, Wei and Atalay, Mustafa and Auvinen, Juha and Bartels, Meike and Beckmann, Jacques S. and Bilbao, Jose Ramon and Bond, Tom and Borja, Judith B. and Cavadino, Alana and Charoen, Pimphen and Chen, Zhanghua and Coin, Lachlan and Cooper, Cyrus and Curtin, John A. and Custovic, Adnan and Das, Shikta and Davies, Gareth E. and Dedoussis, George V. and Duijts, Liesbeth and Eastwood, Peter R. and Eliasen, Anders U. and Elliott, Paul and Eriksson, Johan G. and Estivill, Xavier and Fadista, Joao and Fedko, Iryna O. and Frayling, Timothy M. and Gaillard, Romy and Gauderman, W. James and Geller, Frank and Gilliland, Frank and Gilsanz, Vincente and Granell, Raquel and Grarup, Niels and Groop, Leif and Hadley, Dexter and Hakonarson, Hakon and Hansen, Torben and Hartman, Catharina A. and Hattersley, Andrew T. and Hayes, M. Geoffrey and Hebebrand, Johannes and Heinrich, Joachim and Helgeland, Oyvind and Henders, Anjali K. and Henderson, John and Henriksen, Tine B. and Hirschhorn, Joel N. and Hivert, Marie-France and Hocher, Berthold and Holloway, John W. and Holt, Patrick and Hottenga, Jouke-Jan and Hypponen, Elina and Iniguez, Carmen and Johansson, Stefan and Jugessur, Astanand and Kahonen, Mika and Kalkwarf, Heidi J. and Kaprio, Jaakko and Karhunen, Ville and Kemp, John P. and Kerkhof, Marjan and Koppelman, Gerard H. and Korner, Antje and Kotecha, Sailesh and Kreiner-Moller, Eskil and Kulohoma, Benard and Kumar, Ashish and Kutalik, Zoltan and Lahti, Jari and Lappe, Joan M. and Larsson, Henrik and Lehtimaki, Terho and Lewin, Alexandra M. and Li, Jin and Lichtenstein, Paul and Lindgren, Cecilia M. and Lindi, Virpi and Linneberg, Allan and Liu, Xueping and Liu, Jun and Lowe, William L. and Lundstrom, Sebastian and Lyytikainen, Leo-Pekka and Ma, Ronald C. W. and Mace, Aurelien and Magi, Reedik and Magnus, Per and Mamun, Abdullah A. and Mannikko, Minna and Martin, Nicholas G. and Mbarek, Hamdi and McCarthy, Nina S. and Medland, Sarah E. and Melbye, Mads and Melen, Erik and Mohlke, Karen L. and Monnereau, Claire and Morgen, Camilla S. and Morris, Andrew P. and Murray, Jeffrey C. and Myhre, Ronny and Najman, Jackob M. and Nivard, Michel G. and Nohr, Ellen A. and Nolte, Ilja M. and Ntalla, Ioanna and Oberfield, Sharon E. and Oken, Emily and Oldehinkel, Albertine J. and Pahkala, Katja and Palviainen, Teemu and Panoutsopoulou, Kalliope and Pedersen, Oluf and Pennell, Craig E. and Pershagen, Goran and Pitkanen, Niina and Plomin, Robert and Power, Christine and Prasad, Rashmi B. and Prokopenko, Inga and Pulkkinen, Lea and Raikkonen, Katri and Raitakari, Olli T. and Reynolds, Rebecca M. and Richmond, Rebecca C. and Rivadeneira, Fernando and Rodriguez, Alina and Rose, Richard J. and Salem, Rany and Santa-Marina, Loreto and Saw, Seang-Mei and Schnurr, Theresia M. and Scott, James G. and Selzam, Saskia and Shepherd, John A. and Simpson, Angela and Skotte, Line and Sleiman, Patrick M. A. and Snieder, Harold and Sorensen, Thorkild I. A. and Standl, Marie and Steegers, Eric A. P. and Strachan, David P. and Straker, Leon and Strandberg, Timo and Taylor, Michelle and Teo, Yik-Ying and Thiering, Elisabeth and Torrent, Maties and Tyrrell, Jessica and Uitterlinden, Andre G. and van Beijsterveldt, Toos and van der Most, Peter J. and van Duijn, Cornelia M. and Viikari, Jorma and Vilor-Tejedor, Natalia and Vogelezang, Suzanne and Vonk, Judith M. and Vrijkotte, Tanja G. M. and Vuoksimaa, Eero and Wang, Carol A. and Watkins, William J. and Wichmann, H-Erich and Willemsen, Gonneke and Williams, Gail M. and Wilson, James F. and Wray, Naomi R. and Xu, Shujing and Xu, Cheng-Jian and Yaghootkar, Hanieh and Yi, Lu and Zafarmand, Mohammad Hadi and Zeggini, Eleftheria and Zemel, Babette S. and Hinney, Anke and Lakka, Timo A. and Whitehouse, Andrew J. O. and Sunyer, Jordi and Widen, Elisabeth E. and Feenstra, Bjarke and Sebert, Sylvain and Jacobsson, Bo and Njolstad, Pal R. and Stoltenberg, Camilla and Smith, George Davey and Lawlor, Debbie A. and Paternoster, Lavinia and Timpson, Nicholas J. and Ong, Ken K. and Bisgaard, Hans and Bonnelykke, Klaus and Jaddoe, Vincent W. V. and Tiemeier, Henning and Jarvelin, Marjo-Riitta and Evans, David M. and Perry, John R. B. and Grant, Struan F. A. and Boomsma, Dorret I. and Freathy, Rachel M. and McCarthy, Mark I. and Felix, Janine F.}, title = {The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia}, series = {European journal of epidemiology}, volume = {34}, journal = {European journal of epidemiology}, number = {3}, publisher = {Springer}, address = {Dordrecht}, organization = {EArly Genetics Lifecourse EGG Consortium EGG Membership EAGLE Membership}, issn = {0393-2990}, doi = {10.1007/s10654-019-00502-9}, pages = {279 -- 300}, year = {2019}, abstract = {The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.}, language = {en} } @article{LuZengChenetal.2013, author = {Lu, Yong-Ping and Zeng, De-Ying and Chen, You-Peng and Liang, Xu-Jing and Xu, Jie-Ping and Huang, Si-Min and Lai, Zhi-Wei and Wen, Wang-Rong and von Websky, Karoline and Hocher, Berthold}, title = {Low birth weight is associated with lower respiratory tract infections in children with hand, foot, and mouth disease}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {59}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {9-10}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, doi = {10.7754/Clin.Lab.2012.120725}, pages = {985 -- 992}, year = {2013}, abstract = {Background: Low birth weight (LBW) might be a risk factor for acquiring lower respiratory tract infections (LRTIs) associated with disease related complications in early childhood. HFMD, a frequent viral infection in southern China, is a leading cause of lower respiratory tract infections in children. We analyzed whether LBW is a risk factor for children with HFMD to develop lower respiratory tract infections. Methods: A total of 298 children with HFMD, admitted to a hospital in Qingyuan city, Guangdong province, were recruited. Demographic data and clinical parameters such as serum glucose level and inflammatory markers including peripheral white blood cell count, serum C-reactive protein, and erythrocyte sedimentation rate were routinely collected on admission. Birth weight data were derived from birth records. Results: Mean birth weight (BW) was 167 g lower in patients with HFMD and LRTIs as compared to patients with solely HFMD (p = 0.022) and the frequency of birth weight below the tenth percentile was significantly higher in patients with HFMD and LRTIs (p = 0.002). Conclusions: The results of the study show that low birth weight is associated with a higher incidence of lower respiratory tract infections in young children with HFMD.}, language = {en} } @article{ChengvandenBerghZengetal.2013, author = {Cheng, Shifeng and van den Bergh, Erik and Zeng, Peng and Zhong, Xiao and Xu, Jiajia and Liu, Xin and Hofberger, Johannes and de Bruijn, Suzanne and Bhide, Amey S. and Kuelahoglu, Canan and Bian, Chao and Chen, Jing and Fan, Guangyi and Kaufmann, Kerstin and Hall, Jocelyn C. and Becker, Annette and Br{\"a}utigam, Andrea and Weber, Andreas P. M. and Shi, Chengcheng and Zheng, Zhijun and Li, Wujiao and Lv, Mingju and Tao, Yimin and Wang, Junyi and Zou, Hongfeng and Quan, Zhiwu and Hibberd, Julian M. and Zhang, Gengyun and Zhu, Xin-Guang and Xu, Xun and Schranz, M. Eric}, title = {The Tarenaya hassleriana Genome Provides insight Into Reproductive Trait and Genome Evolution of Crucifers}, series = {The plant cell}, volume = {25}, journal = {The plant cell}, number = {8}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.113.113480}, pages = {2813 -- 2830}, year = {2013}, abstract = {The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is essential for inferring directionality of evolutionary change has been lacking. We therefore sequenced the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae. By comparative analysis of the two lineages, we show that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits. We found an ancient genome triplication in Tarenaya (Th-alpha) that is independent of the Brassicaceae-specific duplication (At-alpha) and nested Brassica (Br-a) triplication. To showcase the potential of sister lineage genome analysis, we investigated the state of floral developmental genes and show Brassica retains twice as many floral MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR) genes as Tarenaya that likely contribute to morphological diversity in Brassica. We also performed synteny analysis of gene families that confer self-incompatibility in Brassicaceae and found that the critical SERINE RECEPTOR KINASE receptor gene is derived from a lineage-specific tandem duplication. The T. hassleriana genome will facilitate future research toward elucidating the evolutionary history of Brassicaceae genomes.}, language = {en} } @article{XuBrearleyLinetal.2005, author = {Xu, J. and Brearley, C. A. and Lin, W. H. and Wang, Y. and Ye, R. and M{\"u}ller-R{\"o}ber, Bernd and Xu, Z. H. and Xue, H. W.}, title = {A role of Arabidopsis inositol polyphosphate kinase, AtIPK2 alpha, in pollen germination and root growth}, issn = {0032-0889}, year = {2005}, abstract = {Inositol polyphosphates, such as inositol trisphosphate, are pivotal intracellular signaling molecules in eukaryotic cells. In higher plants the mechanism for the regulation of the type and the level of these signaling molecules is poorly understood. In this study we investigate the physiological function of an Arabidopsis (Arabidopsis thaliana) gene encoding inositol polyphosphate kinase (AtIPK2alpha), which phosphorylates inositol 1,4,5-trisphosphate successively at the D-6 and D-3 positions, and inositol 1,3,4,5-tetrakisphosphate at D-6, resulting in the generation of inositol 1,3,4,5,6-pentakisphosphate. Semiquantitative reverse transcription-PCR and promoter-beta-glucuronidase reporter gene analyses showed that AtIPK2alpha is expressed in various tissues, including roots and root hairs, stem, leaf, pollen grains, pollen tubes, the flower stigma, and siliques. Transgenic Arabidopsis plants expressing the AtIPK2alpha antisense gene under its own promoter were generated. Analysis of several independent transformants exhibiting strong reduction in AtIPK2alpha transcript levels showed that both pollen germination and pollen tube growth were enhanced in the antisense lines compared to wild-type plants, especially in the presence of nonoptimal low Ca2+ concentrations in the culture medium. Furthermore, root growth and root hair development were also stimulated in the antisense lines, in the presence of elevated external Ca2+ concentration or upon the addition of EGTA. In addition, seed germination and early seedling growth was stimulated in the antisense lines. These observations suggest a general and important role of AtIPK2alpha, and hence inositol polyphosphate metabolism, in the regulation of plant growth most likely through the regulation of calcium signaling, consistent with the well-known function of inositol trisphosphate in the mobilization of intracellular calcium stores}, language = {en} } @article{LiuKliemTitovetal.2016, author = {Liu, Rui and Kliem, Bernhard and Titov, Viacheslav S. and Chen, Jun and Wang, Yuming and Wang, Haimin and Liu, Chang and Xu, Yan and Wiegelmann, Thomas}, title = {STRUCTURE, STABILITY, AND EVOLUTION OF MAGNETIC FLUX ROPES FROM THE PERSPECTIVE OF MAGNETIC TWIST}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {818}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/818/2/148}, pages = {22}, year = {2016}, abstract = {We investigate the evolution of NOAA Active Region (AR) 11817 during 2013 August 10-12, when it developed a complex field configuration and produced four confined, followed by two eruptive, flares. These C-and-above flares are all associated with a magnetic flux rope (MFR) located along the major polarity inversion line, where shearing and converging photospheric flows are present. Aided by the nonlinear force-free field modeling, we identify the MFR through mapping magnetic connectivities and computing the twist number \${{ \mathcal T }}_{w}\$ for each individual field line. The MFR is moderately twisted (\$| {{ \mathcal T }}_{w}| \lt 2\$) and has a well-defined boundary of high squashing factor Q. We found that the field line with the extremum \$| {{ \mathcal T }}_{w}| \$ is a reliable proxy of the rope axis, and that the MFR's peak \$| {{ \mathcal T }}_{w}| \$ temporarily increases within half an hour before each flare while it decreases after the flare peak for both confined and eruptive flares. This pre-flare increase in \$| {{ \mathcal T }}_{w}| \$ has little effect on the AR's free magnetic energy or any other parameters derived for the whole region, due to its moderate amount and the MFR's relatively small volume, while its decrease after flares is clearly associated with the stepwise decrease in the whole region's free magnetic energy due to the flare. We suggest that \${{ \mathcal T }}_{w}\$ may serve as a useful parameter in forewarning the onset of eruption, and therefore, the consequent space weather effects. The helical kink instability is identified as the prime candidate onset mechanism for the considered flares.}, language = {en} } @misc{LadwigZhouXuetal.2018, author = {Ladwig, Simon and Zhou, Zien and Xu, Ying and Wang, Xia and Chow, Clara K. and Werheid, Katja and Hackett, Maree L.}, title = {Comparison of treatment rates of depression after stroke versus myocardial infarction}, series = {Psychosomatic medicine}, volume = {80}, journal = {Psychosomatic medicine}, number = {8}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0033-3174}, doi = {10.1097/PSY.0000000000000632}, pages = {754 -- 763}, year = {2018}, abstract = {Objective Depression after stroke and myocardial infarction (MI) is common but often assumed to be undertreated without reliable evidence being available. Thus, we aimed to determine treatment rates and investigate the application of guidelines in these conditions. Methods Databases MEDLINE, EMBASE, PsycInfo, Web of Science, CINAHL, and Scopus were systematically searched without language restriction from inception to June 30, 2017. Prospective observational studies with consecutive recruitment reporting any antidepressant treatment in adults with depression after stroke or MI were included. Random-effects models were used to calculate pooled estimates of treatment rates. Results Fifty-five studies reported 32 stroke cohorts (n = 8938; pooled frequency of depression = 34\%, 95\% confidence interval [CI] = 29\%-38\%) and 17 MI cohorts (n = 10,767; pooled frequency of depression = 24\%, 95\% CI = 20\%-28\%). In 29 stroke cohorts, 24\% (95\% CI = 20\%-27\%) of 2280 depressed people used antidepressant medication. In 15 MI cohorts, 14\% (95\% CI = 8\%-19\%) of 2381 depressed people used antidepressant medication indicating a lower treatment rate than in stroke. Two studies reported use of psychosocial interventions, indicating that less than 10\% of participants were treated. Conclusions Despite the high frequency of depression after stroke and MI and the existence of efficacious treatment strategies, people often remain untreated. Innovative strategies are needed to increase the use of effective antidepressive interventions in patients with cardiovascular disease.}, language = {en} } @article{TianHuZhangetal.2018, author = {Tian, Guang-Zong and Hu, Jing and Zhang, Heng-Xi and Rademacher, Christoph and Zou, Xiao-Peng and Zheng, Hong-Ning and Xu, Fei and Wang, Xiao-Li and Linker, Torsten and Yin, Jian}, title = {Synthesis and conformational analysis of linear homo- and heterooligomers from novel 2-C-branched sugar amino acids (SAAs)}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-24927-6}, pages = {8}, year = {2018}, abstract = {Sugar amino acids (SAAs), as biologically interesting structures bearing both amino and carboxylic acid functional groups represent an important class of multifunctional building blocks. In this study, we develop an easy access to novel SAAs in only three steps starting from nitro compounds in high yields in analytically pure form, easily available by ceric (IV) mediated radical additions. Such novel SAAs have been applied in the assembly of total nine carbopeptoids with the form of linear homo-and heterooligomers for the structural investigations employing circular dichroism (CD) spectroscopy, which suggest that the carbopeptoids emerge a well-extended, left (or right)-handed conformation similar to polyproline II (PPII) helices. NMR studies also clearly demonstrated the presence of ordered secondary structural elements. 2D-ROESY spectra were acquired to identify i+1NH <-> (C1H)-C-i, (C2H)-C-i correlations which support the conformational analysis of tetramers by CD spectroscopy. These findings provide interesting information of SAAs and their oligomers as potential scaffolds for discovering new drugs and materials.}, language = {en} } @article{YeKurthHospodarskyetal.2018, author = {Ye, Shengyi and Kurth, William S. and Hospodarsky, George B. and Persoon, Ann M. and Sulaiman, Ali H. and Gurnett, Don A. and Morooka, Michiko and Wahlund, Jan-Erik and Hsu, Hsiang-Wen and Sternovsky, Zoltan and Wang, Xu and Horanyi, M. and Seiss, Martin and Srama, Ralf}, title = {Dust Observations by the Radio and Plasma Wave Science Instrument During}, series = {Geophysical research letters}, volume = {45}, journal = {Geophysical research letters}, number = {19}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2018GL078059}, pages = {10101 -- 10109}, year = {2018}, abstract = {Plain Language Summary Cassini flew through the gap between Saturn and its rings for 22 times before plunging into the atmosphere of Saturn, ending its 20-year mission. The radio and plasma waves instrument on board Cassini helped quantify the dust hazard in this previously unexplored region. The measured density of large dust particles was much lower than expected, allowing high-value science observations during the subsequent Grand Finale orbits.}, language = {en} } @article{LiXuWangetal.2017, author = {Li, Zhengdong and Xu, Xun and Wang, Weiwei and Kratz, Karl and Sun, Xianlei and Zou, Jie and Deng, Zijun and Jung, Friedrich Wilhelm and Gossen, Manfred and Ma, Nan and Lendlein, Andreas}, title = {Modulation of the mesenchymal stem cell migration capacity via preconditioning with topographic microstructure}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {67}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-179208}, pages = {267 -- 278}, year = {2017}, abstract = {Controlling mesenchymal stem cells (MSCs) behavior is necessary to fully exploit their therapeutic potential. Various approaches are employed to effectively influence the migration capacity of MSCs. Here, topographic microstructures with different microscale roughness were created on polystyrene (PS) culture vessel surfaces as a feasible physical preconditioning strategy to modulate MSC migration. By analyzing trajectories of cells migrating after reseeding, we demonstrated that the mobilization velocity of human adipose derived mesenchymal stem cells (hADSCs) could be promoted by and persisted after brief preconditioning with the appropriate microtopography. Moreover, the elevated activation levels of focal adhesion kinase (FAK) and mitogen-activated protein kinase (MAPK) in hADSCs were also observed during and after the preconditioning process. These findings underline the potential enhancement of in vivo therapeutic efficacy in regenerative medicine via transplantation of topographic microstructure preconditioned stem cells.}, language = {en} } @article{ZouWangNeffeetal.2017, author = {Zou, Jie and Wang, Weiwei and Neffe, Axel T. and Xu, Xun and Li, Zhengdong and Deng, Zijun and Sun, Xianlei and Ma, Nan and Lendlein, Andreas}, title = {Adipogenic differentiation of human adipose derived mesenchymal stem cells in 3D architectured gelatin based hydrogels (ArcGel)}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {67}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {3-4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-179210}, pages = {297 -- 307}, year = {2017}, abstract = {Polymeric matrices mimicking multiple functions of the ECM are expected to enable a material induced regeneration of tissues. Here, we investigated the adipogenic differentiation of human adipose derived mesenchymal stem cells (hADSCs) in a 3D architectured gelatin based hydrogel (ArcGel) prepared from gelatin and L-lysine diisocyanate ethyl ester (LDI) in an one-step process, in which the formation of an open porous morphology and the chemical network formation were integrated. The ArcGel was designed to support adipose tissue regeneration with its 3D porous structure, high cell biocompatibility, and mechanical properties compatible with human subcutaneous adipose tissue. The ArcGel could support initial cell adhesion and survival of hADSCs. Under static culture condition, the cells could migrate into the inner part of the scaffold with a depth of 840 +/- 120 mu m after 4 days, and distributed in the whole scaffold (2mm in thickness) within 14 days. The cells proliferated in the scaffold and the fold increase of cell number after 7 days of culture was 2.55 +/- 0.08. The apoptotic rate of hADSCs in the scaffold was similar to that of cells maintained on tissue culture plates. When cultured in adipogenic induction medium, the hADSCs in the scaffold differentiated into adipocytes with a high efficiency (93 +/- 1\%). Conclusively, this gelatin based 3D scaffold presented high cell compatibility for hADSC cultivation and differentiation, which could serve as a potential implant material in clinical applications for adipose tissue reparation and regeneration.}, language = {en} } @article{DengWangXuetal.2020, author = {Deng, Zijun and Wang, Weiwei and Xu, Xun and Ma, Nan and Lendlein, Andreas}, title = {Modulation of mesenchymal stem cell migration using programmable polymer sheet actuators}, series = {MRS advances}, volume = {5}, journal = {MRS advances}, number = {46-47}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2020.235}, pages = {2381 -- 2390}, year = {2020}, abstract = {Recruitment of mesenchymal stem cells (MSCs) to damaged tissue is a crucial step to modulate tissue regeneration. Here, the migration of human adipose-derived stem cells (hADSCs) responding to thermal and mechanical stimuli was investigated using programmable shape-memory polymer actuator (SMPA) sheets. Changing the temperature repetitively between 10 and 37 degrees C, the SMPA sheets are capable of reversibly changing between two different pre-defined shapes like an artificial muscle. Compared to non-actuating sheets, the cells cultured on the programmed actuating sheets presented a higher migration velocity (0.32 +/- 0.1 vs. 0.57 +/- 0.2 mu m/min). These results could motivate the next scientific steps, for example, to investigate the MSCs pre-loaded in organoids towards their migration potential.}, language = {en} } @article{WangXuLietal.2019, author = {Wang, Weiwei and Xu, Xun and Li, Zhengdong and Kratz, Karl and Ma, Nan and Lendlein, Andreas}, title = {Modulating human mesenchymal stem cells using poly(n-butyl acrylate) networks in vitro with elasticity matching human arteries}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {71}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-189418}, pages = {277 -- 289}, year = {2019}, abstract = {Non-swelling hydrophobic poly(n-butyl acrylate) network (cPnBA) is a candidate material for synthetic vascular grafts owing to its low toxicity and tailorable mechanical properties. Mesenchymal stem cells (MSCs) are an attractive cell type for accelerating endothelialization because of their superior anti-thrombosis and immune modulatory function. Further, they can differentiate into smooth muscle cells or endothelial-like cells and secret pro-angiogenic factors such as vascular endothelial growth factor (VEGF). MSCs are sensitive to the substrate mechanical properties, with the alteration of their major cellular behavior and functions as a response to substrate elasticity. Here, we cultured human adipose-derived mesenchymal stem cells (hADSCs) on cPnBAs with different mechanical properties (cPnBA250, Young's modulus (E)ā€Š=ā€Š250 kPa; cPnBA1100, Eā€Š=ā€Š1100 kPa) matching the elasticity of native arteries, and investigated their cellular response to the materials including cell attachment, proliferation, viability, apoptosis, senescence and secretion. The cPnBA allowed high cell attachment and showed negligible cytotoxicity. F-actin assembly of hADSCs decreased on cPnBA films compared to classical tissue culture plate. The difference of cPnBA elasticity did not show dramatic effects on cell attachment, morphology, cytoskeleton assembly, apoptosis and senescence. Cells on cPnBA250, with lower proliferation rate, had significantly higher VEGF secretion activity. These results demonstrated that tuning polymer elasticity to regulate human stem cells might be a potential strategy for constructing stem cell-based artificial blood vessels.}, language = {en} } @article{NieWangXuetal.2019, author = {Nie, Yan and Wang, Weiwei and Xu, Xun and Zou, Jie and Bhuvanesh, Thanga and Schulz, Burkhard and Ma, Nan and Lendlein, Andreas}, title = {Enhancement of human induced pluripotent stem cells adhesion through multilayer laminin coating}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {70}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-189318}, pages = {531 -- 542}, year = {2019}, abstract = {Bioengineered cell substrates are a highly promising tool to govern the differentiation of stem cells in vitro and to modulate the cellular behavior in vivo. While this technology works fine for adult stem cells, the cultivation of human induced pluripotent stem cells (hiPSCs) is challenging as these cells typically show poor attachment on the bioengineered substrates, which among other effects causes substantial cell death. Thus, very limited types of surfaces have been demonstrated suitable for hiPSC cultures. The multilayer coating approach that renders the surface with diverse chemical compositions, architectures, and functions can be used to improve the adhesion of hiPSCs on the bioengineered substrates. We hypothesized that a multilayer formation based on the attraction of molecules with opposite charges could functionalize the polystyrene (PS) substrates to improve the adhesion of hiPSCs. Polymeric substrates were stepwise coated, first with dopamine to form a polydopamine (PDA) layer, second with polylysine and last with Laminin-521. The multilayer formation resulted in the variation of hydrophilicity and chemical functionality of the surfaces. Hydrophilicity was detected using captive bubble method and the amount of primary and secondary amines on the surface was quantified by fluorescent staining. The PDA layer effectively immobilized the upper layers and thereby improved the attachment of hiPSCs. Cell adhesion was enhanced on the surfaces coated with multilayers, as compared to those without PDA and/or polylysine. Moreover, hiPSCs spread well over this multilayer laminin substrate. These cells maintained their proliferation capacity and differentiation potential. The multilayer coating strategy is a promising attempt for engineering polymer-based substrates for the cultivation of hiPSCs and of interest for expanding the application scope of hiPSCs.}, language = {en} } @article{WangKratzBehletal.2015, author = {Wang, Weiwei and Kratz, Karl and Behl, Marc and Yan, Wan and Liu, Yue and Xu, Xun and Baudis, Stefan and Li, Zhengdong and Kurtz, Andreas and Lendlein, Andreas and Ma, Nan}, title = {The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {61}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-152001}, pages = {301 -- 321}, year = {2015}, abstract = {Polyether ether ketone (PEEK) as a high-performance, thermoplastic implant material entered the field of medical applications due to its structural function and commercial availability. In bone tissue engineering, the combination of mesenchymal stem cells (MSCs) with PEEK implants may accelerate the bone formation and promote the osseointegration between the implant and the adjacent bone tissue. In this concept the question how PEEK influences the behaviour and functions of MSCs is of great interest. Here the cellular response of human adipose-derived MSCs to PEEK was evaluated and compared to tissue culture plate (TCP) as the reference material. Viability and morphology of cells were not altered when cultured on the PEEK film. The cells on PEEK presented a high proliferation activity in spite of a relatively lower initial cell adhesion rate. There was no significant difference on cell apoptosis and senescence between the cells on PEEK and TCP. The inflammatory cytokines and VEGF secreted by the cells on these two surfaces were at similar levels. The cells on PEEK showed up-regulated BMP2 and down-regulated BMP4 and BMP6 gene expression, whereas no conspicuous differences were observed in the committed osteoblast markers (BGLAP, COL1A1 and Runx2). With osteoinduction the cells on PEEK and TCP exhibited a similar osteogenic differentiation potential. Our results demonstrate the biofunctionality of PEEK for human MSC cultivation and differentiation. Its clinical benefits in bone tissue engineering may be achieved by combining MSCs with PEEK implants. These data may also provide useful information for further modification of PEEK with chemical or physical methods to regulate the cellular processes of MSCs and to consequently improve the efficacy of MSC-PEEK based therapies.}, language = {en} } @article{FanvanWestenKorupetal.2012, author = {Fan, Xuanmei and van Westen, Cees J. and Korup, Oliver and Gorum, Tolga and Xu, Qiang and Dai, Fuchu and Huang, Runqiu and Wang, Gonghui}, title = {Transient water and sediment storage of the decaying landslide dams induced by the 2008 Wenchuan earthquake, China}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {171}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2012.05.003}, pages = {58 -- 68}, year = {2012}, abstract = {Earthquake-triggered landslide dams are potentially dangerous disrupters of water and sediment flux in mountain rivers, and capable of releasing catastrophic outburst flows to downstream areas. We analyze an inventory of 828 landslide dams in the Longmen Shan mountains, China, triggered by the M-w 7.9 2008 Wenchuan earthquake. This database is unique in that it is the largest of its kind attributable to a single regional-scale triggering event: 501 of the spatially clustered landslides fully blocked rivers, while the remainder only partially obstructed or diverted channels in steep watersheds of the hanging wall of the Yingxiu-Beichuan Fault Zone. The size distributions of the earthquake-triggered landslides, landslide dams, and associated lakes (a) can be modeled by an inverse gamma distribution; (b) show that moderate-size slope failures caused the majority of blockages; and (c) allow a detailed assessment of seismically induced river-blockage effects on regional water and sediment storage. Monte Carlo simulations based on volumetric scaling relationships for soil and bedrock failures respectively indicate that 14\% (18\%) of the estimated total coseismic landslide volume of 6.4 (14.6) x 10(9) m(3) was contained in landslide dams, representing only 1.4\% of the >60,000 slope failures attributed to the earthquake. These dams have created storage capacity of similar to 0.6x 10(9) m(3) for incoming water and sediment. About 25\% of the dams containing 2\% of the total river-blocking debris volume failed one week after the earthquake; these figures had risen to 60\% (similar to 20\%), and >90\% (>90\%) within one month, and one:year, respectively, thus also emptying similar to 92\% of the total potential water and sediment storage behind these, dams within one year following the earthquake. Currently only similar to 0.08 x 10(9) m(3) remain available as natural reservoirs for storing water and sediment, while similar to 0.19 x 10(9) m(3), i.e. about a third of the total river-blocking debris volume, has been eroded by rivers. Dam volume and upstream catchment area control to first order the longevity of the barriers, and bivariate domain plots are consistent with the observation that most earthquake-triggered landslide dams were ephemeral. We conclude that the river-blocking portion of coseismic slope failures disproportionately modulates the post-seismic sediment flux in the Longmen Shan on annual to decadal timescales.}, language = {en} } @article{LiuLiuXuetal.2013, author = {Liu, Rui and Liu, Chang and Xu, Yan and Liu, Wei and Kliem, Bernhard and Wang, Haimin}, title = {Observation of a moretown wave and wave-filament interactions associated with the renowned X9 flare on 1990 May 24}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {773}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/773/2/166}, pages = {13}, year = {2013}, abstract = {Using Big Bear Solar Observatory film data recently digitized at NJIT, we investigate a Moreton wave associated with an X9 flare on 1990 May 24, as well as its interactions with four filaments F1-F4 located close to the flaring region. The interaction yields interesting insight into physical properties of both the wave and the filaments. The first clear Moreton wavefront appears at the flaring-region periphery at approximately the same time as the peak of a microwave burst and the first of two gamma-ray peaks. The wavefront propagates at different speeds ranging from 1500-2600 km s(-1) in different directions, reaching as far as 600 Mm away from the flaring site. Sequential chromospheric brightenings are observed ahead of the Moreton wavefront. A slower diffuse front at 300-600 km s(-1) is observed to trail the fast Moreton wavefront about one minute after the onset. The Moreton wave decelerates to similar to 550 km s(-1) as it sweeps through F1. The wave passage results in F1's oscillation which is featured by similar to 1 mHz signals with coherent Fourier phases over the filament, the activation of F3 and F4 followed by gradual recovery, but no disturbance in F2. Different height and magnetic environment together may account for the distinct responses of the filaments to the wave passage. The wavefront bulges at F4, whose spine is oriented perpendicular to the upcoming wavefront. The deformation of the wavefront is suggested to be due to both the forward inclination of the wavefront and the enhancement of the local Alfven speed within the filament channel.}, language = {en} } @article{GaoZeilingerXuetal.2013, author = {Gao, Mingxing and Zeilinger, Gerold and Xu, Xiwei and Wang, Qingliang and Hao, Ming}, title = {DEM and GIS analysis of geomorphic indices for evaluating recent uplift of the northeastern margin of the Tibetan Plateau, China}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {190}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, number = {20}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2013.02.008}, pages = {61 -- 72}, year = {2013}, abstract = {The northeastern margin of the Tibetan Plateau is a tectonically active region consisting of a series of faults with bounded intermountain basins and is located in the transition zone between the Tibetan Plateau and the Loess Plateau. Active deformation that may affect the topography in this region can be quantified using geomorphic indices. Therefore, we applied geomorphic indices such as the hypsometric integral and the stream length gradient index to infer neo-tectonics in the northeastern margin of the Tibetan Plateau. Different time-scaled geodetic leveling data and river incision rates were also integrated into the investigation. The results show that the hypsometric integrals are not significantly affected by lithology but spatially correspond to the hanging walls of thrust faults. The hypsometric integrals are also positively correlated with the leveling data. Although the stream length gradient index is influenced by lithology, its most pronounced anomalies of the stream length gradient are associated with the thrust faults. Consequently, the uplift in the northeast margin of the Tibetan Plateau appeared to be concentrated along the hanging walls of the thrust faults.}, language = {en} } @article{ChenLiWangetal.2012, author = {Chen, You-Peng and Li, Jian and Wang, Zi-Neng and Reichetzeder, Christoph and Xu, Hao and Gong, Jian and Chen, Guang-Ji and Pfab, Thiemo and Xiao, Xiao-Min and Hocher, Berthold}, title = {Renin angiotensin aldosterone system and glycemia in pregnancy}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {58}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {5-6}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, pages = {527 -- 533}, year = {2012}, abstract = {Background: The renin-angiotensin-aldosterone system (RAAS) is involved in the pathogenesis of insulin resistance and type 2 diabetes in the general population. The RAAS is activated during pregnancy. However, it is unknown whether the RAAS contributes to glycemia in pregnant women. Methods: Plasma renin activity (PRA) and plasma aldosterone levels were quantified at delivery in 689 Chinese mothers. An oral glucose tolerance test in fasted women was performed in the second trimester of pregnancy. The diagnosis of gestational diabetes mellitus (GDM) and impaired glucose tolerance during pregnancy were made according to the guidelines of the Chinese Society of Obstetrics. Results: Plasma aldosterone was significantly higher in pregnant women with GDM as compared to those without impairment of glycemic control (normal pregnancies: 0.27 +/- 0.21 ng/mL, GDM: 0.36 +/- 0.30 ng/mL; p<0.05). Regression analyses revealed that PRA was negatively correlated with fasting blood glucose (FBG) (R-2 = 0.03, p = 0.007), whereas plasma aldosterone and aldosterone/PRA ratio were positively correlated with FBG (R-2 = 0.05, p<0.001 and R-2 = 0.03, p = 0.007, respectively). Multivariable regression analysis models considering relevant confounding factors confirmed these findings. Conclusions: This study demonstrated that fasting blood glucose in pregnant women is inversely correlated with the PRA, whereas plasma aldosterone showed a highly significant positive correlation with fasting blood glucose during pregnancy. Moreover, plasma aldosterone is significantly higher in pregnant women with GDM as compared to those women with normal glucose tolerance during pregnancy. Although causality cannot be proven in association studies, these data may indicate that the RAAS during pregnancy contributes to the pathogenesis of insulin resistance/new onset of diabetes during pregnancy.}, language = {en} }