@article{KrapfMarinariMetzleretal.2018, author = {Krapf, Diego and Marinari, Enzo and Metzler, Ralf and Oshanin, Gleb and Xu, Xinran and Squarcini, Alessio}, title = {Power spectral density of a single Brownian trajectory}, series = {New journal of physics : the open-access journal for physics}, volume = {20}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/aaa67c}, pages = {30}, year = {2018}, abstract = {The power spectral density (PSD) of any time-dependent stochastic processX (t) is ameaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of X-t over an infinitely large observation timeT, that is, it is defined as an ensemble-averaged property taken in the limitT -> infinity. Alegitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation timeT. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is afluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.}, language = {en} } @article{KrapfLukatMarinarietal.2019, author = {Krapf, Diego and Lukat, Nils and Marinari, Enzo and Metzler, Ralf and Oshanin, Gleb and Selhuber-Unkel, Christine and Squarcini, Alessio and Stadler, Lorenz and Weiss, Matthias and Xu, Xinran}, title = {Spectral Content of a Single Non-Brownian Trajectory}, series = {Physical review : X, Expanding access}, volume = {9}, journal = {Physical review : X, Expanding access}, number = {1}, publisher = {American Physical Society}, address = {College Park}, issn = {2160-3308}, doi = {10.1103/PhysRevX.9.011019}, pages = {13}, year = {2019}, abstract = {Time-dependent processes are often analyzed using the power spectral density (PSD) calculated by taking an appropriate Fourier transform of individual trajectories and finding the associated ensemble average. Frequently, the available experimental datasets are too small for such ensemble averages, and hence, it is of a great conceptual and practical importance to understand to which extent relevant information can be gained from S(f, T), the PSD of a single trajectory. Here we focus on the behavior of this random, realization-dependent variable parametrized by frequency f and observation time T, for a broad family of anomalous diffusions-fractional Brownian motion with Hurst index H-and derive exactly its probability density function. We show that S(f, T) is proportional-up to a random numerical factor whose universal distribution we determine-to the ensemble-averaged PSD. For subdiffusion (H < 1/2), we find that S(f, T) similar to A/f(2H+1) with random amplitude A. In sharp contrast, for superdiffusion (H > 1/2) S(f, T) similar to BT2H-1/f(2) with random amplitude B. Remarkably, for H > 1/2 the PSD exhibits the same frequency dependence as Brownian motion, a deceptive property that may lead to false conclusions when interpreting experimental data. Notably, for H > 1/2 the PSD is ageing and is dependent on T. Our predictions for both sub-and superdiffusion are confirmed by experiments in live cells and in agarose hydrogels and by extensive simulations.}, language = {en} } @misc{KrapfMarinariMetzleretal.2018, author = {Krapf, Diego and Marinari, Enzo and Metzler, Ralf and Oshanin, Gleb and Xu, Xinran and Squarcini, Alessio}, title = {Power spectral density of a single Brownian trajectory}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {655}, issn = {1866-8372}, doi = {10.25932/publishup-42429}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424296}, pages = {31}, year = {2018}, abstract = {The power spectral density (PSD) of any time-dependent stochastic processX (t) is ameaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of X-t over an infinitely large observation timeT, that is, it is defined as an ensemble-averaged property taken in the limitT -> infinity. Alegitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation timeT. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is afluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.}, language = {en} }