@article{MaromKoerzdoerferRenetal.2014, author = {Marom, Noa and K{\"o}rzd{\"o}rfer, Thomas and Ren, Xinguo and Tkatchenko, Alexandre and Chelikowsky, James R.}, title = {Size effects in the interface level alignment of dye-Sensitized TiO2 clusters}, series = {The journal of physical chemistry letters}, volume = {5}, journal = {The journal of physical chemistry letters}, number = {14}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz5008356}, pages = {2395 -- 2401}, year = {2014}, abstract = {The efficiency of dye-sensitized solar cells (DSCs) depends critically on the electronic structure of the interfaces in the active region. We employ recently developed dispersion-inclusive density functional theory (DFT) and GW methods to study the electronic structure of TiO2 clusters sensitized with catechol molecules. We show that the energy level alignment at the dye-TiO2 interface is the result of an intricate interplay of quantum size effects and dynamic screening effects and that it may be manipulated by nanostructuring and functionalizing the TiO2. We demonstrate that the energy difference between the catechol LUMO and the TiO2 LUMO, which is associated with the injection loss in DSCs, may be reduced significantly by reducing the dimensions of nanostructured TiO2 and by functionalizing the TiO2 with wide-gap moieties, which contribute additional screening but do not interact strongly with the frontier orbitals of the TiO2 and the dye. Precise control of the electronic structure may be achieved via "interface engineering" in functional nanostructures.}, language = {en} } @article{MaromCarusoRenetal.2012, author = {Marom, Noa and Caruso, Fabio and Ren, Xinguo and Hofmann, Oliver T. and K{\"o}rzd{\"o}rfer, Thomas and Chelikowsky, James R. and Rubio, Angel and Scheffler, Matthias and Rinke, Patrick}, title = {Benchmark of GW methods for azabenzenes}, series = {Physical review : B, Condensed matter and materials physics}, volume = {86}, journal = {Physical review : B, Condensed matter and materials physics}, number = {24}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.86.245127}, pages = {16}, year = {2012}, abstract = {Many-body perturbation theory in the GW approximation is a useful method for describing electronic properties associated with charged excitations. A hierarchy of GW methods exists, starting from non-self-consistent G(0)W(0), through partial self-consistency in the eigenvalues and in the Green's function (scGW(0)), to fully self-consistent GW (scGW). Here, we assess the performance of these methods for benzene, pyridine, and the diazines. The quasiparticle spectra are compared to photoemission spectroscopy (PES) experiments with respect to all measured particle removal energies and the ordering of the frontier orbitals. We find that the accuracy of the calculated spectra does not match the expectations based on their level of self-consistency. In particular, for certain starting points G(0)W(0) and scGW(0) provide spectra in better agreement with the PES than scGW.}, language = {en} } @article{KnightWangGallandietal.2016, author = {Knight, Joseph W. and Wang, Xiaopeng and Gallandi, Lukas and Dolgounitcheva, Olga and Ren, Xinguo and Ortiz, J. Vincent and Rinke, Patrick and K{\"o}rzd{\"o}rfer, Thomas and Marom, Noa}, title = {Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules III: A Benchmark of GW Methods}, series = {Journal of chemical theory and computation}, volume = {12}, journal = {Journal of chemical theory and computation}, publisher = {American Chemical Society}, address = {Washington}, issn = {1549-9618}, doi = {10.1021/acs.jctc.5b00871}, pages = {615 -- 626}, year = {2016}, abstract = {The performance of different GW methods is assessed for a set of 24 organic acceptors. Errors are evaluated with respect to coupled cluster singles, doubles, and perturbative triples [CCSD(T)] reference data for the vertical ionization potentials (IPs) and electron affinities (EAs), extrapolated to the complete basis set limit. Additional comparisons are made to experimental data, where available. We consider fully self-consistent GW (scGW), partial self-consistency in the Green's function (scGW0), non-self-consistent G0W0 based on several mean-field starting points, and a "beyond GW" second-order screened exchange (SOSEX) correction to G0W0. We also describe the implementation of the self-consistent Coulomb hole with screened exchange method (COHSEX), which serves as one of the mean-field starting points. The best performers overall are G0W0+SOSEX and G0W0 based on an IP-tuned long-range corrected hybrid functional with the former being more accurate for EAs and the latter for IPs. Both provide a balanced treatment of localized vs delocalized states and valence spectra in good agreement with photoemission spectroscopy (PES) experiments.}, language = {en} }