@article{KammerStarkePietruchaetal.2012, author = {Kammer, Stefan and Starke, Ines and Pietrucha, Andreas and Kelling, Alexandra and Mickler, Wulfhard and Schilde, Uwe and Dosche, Carsten and Kleinpeter, Erich and Holdt, Hans-J{\"u}rgen}, title = {1,12-Diazaperylene and 2,11-dialkylated-1,12-diazaperylene iridium(III) complexes [Ir((CN)-N-boolean AND)(2)((NN)-N-boolean AND)]PF6: new supramolecular assemblies}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {41}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, number = {34}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c2dt30412k}, pages = {10219 -- 10227}, year = {2012}, abstract = {A series of new monocationic iridium(III) complexes [Ir((CN)-N-boolean AND)(2)((NN)-N-boolean AND)]PF6 with "large-surface" alpha,alpha'-diimin ligands (NN)-N-boolean AND (dap = 1,12-diazaperylene, dmedap = 2,11-dimethyl-1,12-diazaperylene, dipdap = 2,11-diisopropyl-1,12-diazaperylene) and different cyclometalating ligands (CN)-N-boolean AND (piq = 1-phenylisoquinoline, bzq = benzo[h]quinoline, ppz = 1-phenylpyrazole, thpy = 2-(2-thienyl)pyridine, ppy = 2-phenylpyridine, meppy = 2-(4-methylphenyl)pyridine, dfppy = 2-(2,4-difluorophenyl)pyridine) were synthesized. The solid structures of the complexes [Ir(piq)(2)(dap)]PF6, [Ir(bzq)(2)(dap)]PF6, [Ir(ppy)(2)(dipdap)]PF6, [Ir(piq)(2)(dmedap)]PF6, [Ir(ppy)(2)(dap)]PF6 and [Ir(ppz)(2)(dap)]PF6 are reported. In [Ir(piq)(2)(dap)]PF6, the dap ligand and one of the piq ligands of each cationic complex are involved in pi-pi stacking interactions forming supramolecular channels running along the crystallographic c axis. In the crystalline [Ir(bzq)(2)(dap)]PF6 pi-pi stacking interactions between the metal complexes lead to the formation of a 2D layer structure. In addition, CH-pi interactions were found in all compounds, which are what stabilizes the solid structure. In particular, a significant number of them were found in [Ir(piq)(2)(dap)]PF6 and [Ir(bzq)(2)(dap)]PF6. The crystal structures of [Ir(ppy)(2)(dipdap)]PF6 and [Ir(ppy)(2)(dmedap)]PF6 are also presented, being the first examples of bis-cyclometalated iridium(III) complexes with phenanthroline-type alpha,alpha'-diimin ligands bearing bulky alkyl groups in the neighbourhood of the N-donor atoms. These ligands implicate a distorted octahedral coordination geometry that in turn destabilized the Ir-N-N boolean AND N bonds. The new iridium (III) complexes are not luminescent. All compounds show an electrochemically irreversible anodic peak between 1.15 and 1.58 V, which is influenced by the different cyclometalated ligands. All of the new complexes show two reversible successive one-electron "large-surface" ligand-centred reductions around -0.70 V and -1.30 V. Electrospray ionisation mass spectrometry (ESI-MS) and collision induced decomposition (CID) measurements were used to investigate the stability of the new complexes. Thereby, the stability agreed well with the order of the Ir-N-N boolean AND N bond lengths.}, language = {en} } @article{TraegerKlamrothKellingetal.2012, author = {Tr{\"a}ger, Juliane and Klamroth, Tillmann and Kelling, Alexandra and Lubahn, Susanne and Cleve, Ernst and Mickler, Wulfhard and Heydenreich, Matthias and M{\"u}ller, Holger and Holdt, Hans-J{\"u}rgen}, title = {Complexation of Palladium(II) with unsaturated Dithioethers a systematic development of highly selective ligands for solvent extraction}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201101406}, pages = {2341 -- 2352}, year = {2012}, abstract = {There is a demand for new and robust PdII extractants due to growing recycling rates. Chelating dithioethers are promising substances for solvent extraction as they form stable square-planar complexes with PdII. We have modified unsaturated dithioethers, which are known to coordinate PdII, and adapted them to the requirements of industrial practice. The ligands are analogues of 1,2-dithioethene with varying electron-withdrawing backbones and polar end-groups. The crystal structures of several ligands and their palladium complexes were determined as well as their electro- and photochemical properties, complex stability and behaviour in solution. Solvent extraction experiments showed the superiority of some of our ligands over conventionally used extractants in terms of their very fast reaction rates. With highly selective 1,2-bis(2-methoxyethylthio)benzene (4) it is possible to extract PdII from a highly acidic medium in the presence of other base and palladium-group metals.}, language = {en} } @article{AwadKochMickleretal.2012, author = {Awad, Duha Jawad and Koch, Andreas and Mickler, Wulfhard and Schilde, Uwe and Strauch, Peter}, title = {EPR spectroscopy of 4, 4 '-Bis(tert-butyl)-2, 2 '-bipyridine-1, 2-dithiolatocuprates(II) in host lattices with different coordination geometries}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {638}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.201100517}, pages = {965 -- 975}, year = {2012}, abstract = {A series of new heteroleptic MN2S2 transition metal complexes with M = Cu2+ for EPR measurements and as diamagnetic hosts Ni2+, Zn2+, and Pd2+ were synthesized and characterized. The ligands are N2 = 4, 4'-bis(tert-butyl)-2, 2'-bipyridine (tBu2bpy) and S2 =1, 2-dithiooxalate, (dto), 1, 2-dithiosquarate, (dtsq), maleonitrile-1, 2-dithiolate, or 1, 2-dicyanoethene-1, 2-dithiolate, (mnt). The CuII complexes were studied by EPR in solution and as powders, diamagnetically diluted in the isostructural planar [NiII(tBu2bpy)(S2)] or[PdII(tBu2bpy)(S2)] as well as in tetrahedrally coordinated[ZnII(tBu2bpy)(S2)] host structures to put steric stress on the coordination geometry of the central CuN2S2 unit. The spin density contributions for different geometries calculated from experimental parameters are compared with the electronic situation in the frontier orbital, namely in the semi-occupied molecular orbital (SOMO) of the copper complex, derived from quantum chemical calculations on different levels (EHT and DFT). One of the hosts, [NiII(tBu2bpy)(mnt)], is characterized by X-ray structure analysis to prove the coordination geometry. The complex crystallizes in a square-planar coordination mode in the monoclinic space group P21/a with Z = 4 and the unit cell parameters a = 10.4508(10) angstrom, b = 18.266(2) angstrom, c = 12.6566(12) angstrom, beta = 112.095(7)degrees. Oxidation and reductions potentials of one of the host complexes, [Ni(tBu2bpy)(mnt)], were obtained by cyclovoltammetric measurements.}, language = {en} } @article{BrietzkeMicklerKellingetal.2012, author = {Brietzke, Thomas Martin and Mickler, Wulfhard and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen}, title = {Mono- and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {41}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, number = {9}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c2dt11805j}, pages = {2788 -- 2797}, year = {2012}, abstract = {We report the synthesis of free 1,6,7,12-tetraazaperylene (tape). Tape was obtained from 1,1'-bis-2,7-naphthyridine by potassium promoted cyclization followed by oxidation with air. Mono-and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes of the general formulas [Ru(L-L)(2)(tape)](PF6)(2), [1] (PF6)(2)-[5](PF6)(2), and [{Ru(L-L)(2)}(2)(mu-tape)](PF6)(4), [6](PF6)(4)-[10](PF6)(4), with{L-L = phen, bpy, dmbpy (4,4'-dimethyl-2,2'-bipyridine), dtbbpy (4,4'-ditertbutyl-2,2'-bipyridine) and tmbpy (4,4' 5,5'-tetramethyl-2,2'- bipyridine)}, respectively, were synthesized. The X-ray structures of tape center dot 2CHCl(3) and the mononuclear complexes [Ru(bpy)(2)(tape)](PF6)(2)center dot 0.5CH(3)CN center dot 0.5toluene, [Ru(dmbpy)(2)(tape)] (PF6)(2)center dot 2toluene and [Ru(dtbbpy)(2)(tape)](PF6)(2) center dot 3acetone center dot 0.5H(2)O were solved. The UV-vis absorption spectra and the electrochemical behavior of the ruthenium(II) tape complexes were explored and compared with the data of the analogous dibenzoeilatin (dbneil), 2,2'-bipyrimidine (bpym) and tetrapyrido [3,2-a:2',3'-c:3 '',2''-h:2''',3'''-j] phenazin (tpphz) species.}, language = {en} } @article{BrietzkeMicklerKellingetal.2012, author = {Brietzke, Thomas Martin and Mickler, Wulfhard and Kelling, Alexandra and Schilde, Uwe and Kr{\"u}ger, Hans-Joerg and Holdt, Hans-J{\"u}rgen}, title = {Mono- and dinuclear Ruthenium(II)-1,6,7,12-Tetraazaperylene complexes of N,N '-Dimethyl-2,11-diaza[3.3](2,6)-pyridinophane}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {29}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201200667}, pages = {4632 -- 4643}, year = {2012}, abstract = {Ruthenium(II) complexes [Ru(L-N4Me2)(dape)](PF6)2 {[1](PF6)2}, [Ru(L-N4Me2)(tape)](PF6)2 {[2](PF6)2}, and [{Ru(L-N4Me2)}2(mu-tape)](PF6)4 {[3](PF6)4} were synthesized in two reaction steps by first reacting [Ru(DMSO)4Cl2] with tetraazamacrocyclic ligand N,N'-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane (L-N4Me2) in ethanol under microwave irradiation to the intermediate [Ru(L-N4Me2)Cl2], which was subsequently, without further isolation, reacted with 1,12-diazaperylene (dape) or 1,6,7,12-tetraazaperylene (tape). X-ray structures of [Ru(L-N4Me2)(dape)](PF6)2, [Ru(L-N4Me2)(tape)](PF6)2.acetone, and [{Ru(L-N4Me2)}2(mu-tape)](ClO4)4.MeCN were determined. The UV/Vis absorption spectra of [1](PF6)2, [2](PF6)2, and [3](PF6)4 in acetonitrile display intense low-energy dp(Ru)?p* (dape or tape) MLCT absorption bands centered at 579, 637, and 794 nm, respectively. Reversible metal oxidations for the bimetallic complex [{Ru(L-N4Me2)}2(mu-tape)]4+ ([3]4+) are detected at 1.69 and 1.28 V vs. SCE. The potential difference ?E = 410 mV and the intervalence-charge-transfer (IVCT) transition at 2472 nm indicate a high degree of electronic interaction between the two ruthenium ions mediated through the tape bridging ligand. All three complexes, [1]2+, [2]2+, and [3]4+, were characterized by UV/Vis spectroelectrochemistry. The monooxidized and monoreduced states, [1]3+, [2]3+, [3]5+, and [1]+, [2]+, [3]3+, are accessible by reversible one-electron oxidation and one-electron reduction processes, respectively, as documented by the observation of several stable isosbestic points in the spectral progressions. The second reduction in each complex and the second oxidation in [3]4+ prove to be irreversible in these spectroelectrochemical experiments. Monoreduced species [1]+, [2]+, and [3]3+ yield EPR signals indicating that the unpaired electron is mainly centered on the large surface ligands dape or tape.}, language = {en} }