@article{GaalSchickHerzogetal.2012, author = {Gaal, P. and Schick, Daniel and Herzog, Marc and Bojahr, Andre and Shayduk, Roman and Goldshteyn, J. and Navirian, Hengameh A. and Leitenberger, Wolfram and Vrejoiu, Ionela and Khakhulin, D. and Wulff, M. and Bargheer, Matias}, title = {Time-domain sampling of x-ray pulses using an ultrafast sample response}, series = {Applied physics letters}, volume = {101}, journal = {Applied physics letters}, number = {24}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4769828}, pages = {4}, year = {2012}, abstract = {We employ the ultrafast response of a 15.4 nm thin SrRuO3 layer grown epitaxially on a SrTiO3 substrate to perform time-domain sampling of an x-ray pulse emitted from a synchrotron storage ring. Excitation of the sample with an ultrashort laser pulse triggers coherent expansion and compression waves in the thin layer, which turn the diffraction efficiency on and off at a fixed Bragg angle during 5 ps. This is significantly shorter than the duration of the synchrotron x-ray pulse of 100 ps. Cross-correlation measurements of the ultrafast sample response and the synchrotron x-ray pulse allow to reconstruct the x-ray pulse shape.}, language = {en} } @article{TchoumbaKwamenRoessleLeitenbergeretal.2019, author = {Tchoumba Kwamen, Christelle Larodia and R{\"o}ssle, Matthias and Leitenberger, Wolfram and Alexe, Marin and Bargheer, Matias}, title = {Time-resolved X-ray diffraction study of the structural dynamics in an epitaxial ferroelectric thin Pb(Zr0.2Ti0.8)O-3 film induced by sub-coercive fields}, series = {Applied physics letters}, volume = {114}, journal = {Applied physics letters}, number = {16}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.5084104}, pages = {5}, year = {2019}, abstract = {The electric field-dependence of structural dynamics in a tetragonal ferroelectric lead zirconate titanate thin film is investigated under subcoercive and above-coercive fields using time-resolved X-ray diffraction. The domain nucleation and growth are monitored in real time during the application of an external field to the prepoled thin film capacitor. We propose the observed broadening of the in-plane peak width of the symmetric 002 Bragg reflection as an indicator of the domain disorder and discuss the processes that change the measured peak intensity. Subcoercive field switching results in remnant disordered domain configurations. Published under license by AIP Publishing.}, language = {en} } @article{ReppertWilligPudelletal.2018, author = {Reppert, Alexander von and Willig, Lisa and Pudell, Jan-Etienne and Roessle, M. and Leitenberger, Wolfram and Herzog, Marc and Ganss, F. and Hellwig, O. and Bargheer, Matias}, title = {Ultrafast laser generated strain in granular and continuous FePt thin films}, series = {Applied physics letters}, volume = {113}, journal = {Applied physics letters}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.5050234}, pages = {5}, year = {2018}, abstract = {We employ ultrafast X-ray diffraction to compare the lattice dynamics of laser-excited continuous and granular FePt films on MgO (100) substrates. Contrary to recent results on free-standing granular films, we observe in both cases a pronounced and long-lasting out-of-plane expansion. We attribute this discrepancy to the in-plane expansion, which is suppressed by symmetry in continuous films. Granular films on substrates are less constrained and already show a reduced out-of-plane contraction. Via the Poisson effect, out-of-plane contractions drive in-plane expansion and vice versa. Consistently, the granular film exhibits a short-lived out-of-plane contraction driven by ultrafast demagnetization which is followed by a reduced and delayed expansion. From the acoustic reflections of the observed strain waves at the film-substrate interface, we extract a 13\% reduction of the elastic constants in thin 10 nm FePt films compared to bulk-like samples. (C) 2018 Author(s).}, language = {en} } @article{SchickHerzogBojahretal.2014, author = {Schick, Daniel and Herzog, Marc and Bojahr, Andre and Leitenberger, Wolfram and Hertwig, Andreas and Shayduk, Roman and Bargheer, Matias}, title = {Ultrafast lattice response of photoexcited thin films studied by X-ray diffraction}, series = {Structural dynamics}, volume = {1}, journal = {Structural dynamics}, number = {6}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2329-7778}, doi = {10.1063/1.4901228}, pages = {13}, year = {2014}, abstract = {Using ultrafast X-ray diffraction, we study the coherent picosecond lattice dynamics of photoexcited thin films in the two limiting cases, where the photoinduced stress profile decays on a length scale larger and smaller than the film thickness. We solve a unifying analytical model of the strain propagation for acoustic impedance-matched opaque films on a semi-infinite transparent substrate, showing that the lattice dynamics essentially depend on two parameters: One for the spatial profile and one for the amplitude of the strain. We illustrate the results by comparison with high-quality ultrafast X-ray diffraction data of SrRuO3 films on SrTiO3 substrates. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.}, language = {en} } @article{HerzogLeitenbergerShayduketal.2010, author = {Herzog, Marc and Leitenberger, Wolfram and Shayduk, Roman and van der Veen, Renske Marjan and Milne, Chris J. and Johnson, Steven Lee and Vrejoiu, Ionela and Alexe, Marin and Hesse, Dietrich and Bargheer, Matias}, title = {Ultrafast manipulation of hard x-rays by efficient Bragg switches}, issn = {0003-6951}, doi = {10.1063/1.3402773}, year = {2010}, abstract = {We experimentally demonstrate efficient switching of the hard x-ray Bragg reflectivity of a SrRuO3 /SrTiO3 superlattice by optical excitation of large-amplitude coherent acoustic superlattice phonons. The rocking curve changes drastically on a 1 ps timescale. The (0 0 116) reflection is almost extinguished (Delta R/R-0=-0.91), while the (0 0 118) reflection increases by more than an order of magnitude (Delta R/R-0=24.1). The change of the x-ray structure factor depends nonlinearly on the phonon amplitude, allowing manipulation of the x-ray response on a timescale considerably shorter than the phonon period. Numerical simulations for a superlattice with slightly changed geometry and realistic parameters predict a switching-contrast ratio Delta R/R-0 of 700 with high reflectivity.}, language = {en} } @article{GaalSchickHerzogetal.2014, author = {Gaal, Peter and Schick, Daniel and Herzog, Marc and Bojahr, Andre and Shayduk, Roman and Goldshteyn, Jevgeni and Leitenberger, Wolfram and Vrejoiu, Ionela and Khakhulin, Dmitry and Wulff, Michael and Bargheer, Matias}, title = {Ultrafast switching of hard X-rays}, series = {Journal of synchrotron radiation}, volume = {21}, journal = {Journal of synchrotron radiation}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0909-0495}, doi = {10.1107/S1600577513031949}, pages = {380 -- 385}, year = {2014}, abstract = {A new concept for shortening hard X-ray pulses emitted from a third-generation synchrotron source down to few picoseconds is presented. The device, called the PicoSwitch, exploits the dynamics of coherent acoustic phonons in a photo-excited thin film. A characterization of the structure demonstrates switching times of <= 5 ps and a peak reflectivity of similar to 10(-3). The device is tested in a real synchrotron-based pump-probe experiment and reveals features of coherent phonon propagation in a second thin film sample, thus demonstrating the potential to significantly improve the temporal resolution at existing synchrotron facilities.}, language = {en} } @article{KocReinhardtReppertetal.2017, author = {Koc, Azize and Reinhardt, M. and Reppert, Alexander von and Roessle, Matthias and Leitenberger, Wolfram and Dumesnil, K. and Gaal, Peter and Zamponi, Flavio and Bargheer, Matias}, title = {Ultrafast x-ray diffraction thermometry measures the influence of spin excitations on the heat transport through nanolayers}, series = {Physical review : B, Condensed matter and materials physics}, volume = {96}, journal = {Physical review : B, Condensed matter and materials physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.96.014306}, pages = {7}, year = {2017}, abstract = {We investigate the heat transport through a rare earth multilayer system composed of yttrium (Y), dysprosium (Dy), and niobium (Nb) by ultrafast x-ray diffraction. This is an example of a complex heat flow problem on the nanoscale, where several different quasiparticles carry the heat and conserve a nonequilibrium for more than 10 ns. The Bragg peak positions of each layer represent layer-specific thermometers that measure the energy flow through the sample after excitation of the Y top layer with fs-laser pulses. In an experiment-based analytic solution to the nonequilibrium heat transport problem, we derive the individual contributions of the spins and the coupled electron-lattice system to the heat conduction. The full characterization of the spatiotemporal energy flow at different starting temperatures reveals that the spin excitations of antiferromagnetic Dy speed up the heat transport into the Dy layer at low temperatures, whereas the heat transport through this layer and further into the Y and Nb layers underneath is slowed down. The experimental findings are compared to the solution of the heat equation using macroscopic temperature-dependent material parameters without separation of spin and phonon contributions to the heat. We explain why the simulated energy density matches our experiment-based derivation of the heat transport, although the simulated thermoelastic strain in this simulation is not even in qualitative agreement.}, language = {en} }