@article{HajdukTodtHamannetal.2020, author = {Hajduk, Marcin and Todt, Helge Tobias and Hamann, Wolf-Rainer and Borek, Karolina and van Hoof, Peter A. M. and Zijlstra, Albert A.}, title = {The cooling-down central star of the planetary nebula SwSt 1}, series = {Monthly notices of the Royal Astronomical Society}, volume = {498}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa2274}, pages = {1205 -- 1220}, year = {2020}, abstract = {SwSt 1 (PN G001.5-06.7) is a bright and compact planetary nebula containing a late [WC]-type central star. Previous studies suggested that the nebular and stellar lines are slowly changing with time. We studied new and archival optical and ultraviolet spectra of the object. The [O III] 4959 and 5007 angstrom to H beta line flux ratios decreased between about 1976 and 1997/2015. The stellar spectrum also shows changes between these epochs. We modelled the stellar and nebular spectra observed at different epochs. The analyses indicate a drop of the stellar temperature from about 42 kK to 40.5 kK between 1976 and 1993. We do not detect significant changes between 1993 and 2015. The observations show that the star performed a loop in the H-R diagram. This is possible when a shell source is activated during its post-AGB evolution. We infer that a late thermal pulse (LTP) experienced by a massive post-AGB star can explain the evolution of the central star. Such a star does not expand significantly as the result of the LTP and does not became a born-again red giant. However, the released energy can remove the tiny H envelope of the star.}, language = {en} } @article{AmbergausdemMooreBekketal.2022, author = {Amberg, Maximilian and aus dem Moore, Nils and Bekk, Anke and Bergmann, Tobias and Edenhofer, Ottmar and Flachsland, Christian and George, Jan and Haywood, Luke and Heinemann, Maik and Held, Anne and Kalkuhl, Matthias and Kellner, Maximilian and Koch, Nicolas and Luderer, Gunnar and Meyer, Henrika and Nikodinoska, Dragana and Pahle, Michael and Roolfs, Christina and Schill, Wolf-Peter}, title = {Reformoptionen f{\"u}r ein nachhaltiges Steuer- und Abgabensystem}, series = {Perspektiven der Wirtschaftspolitik}, volume = {23}, journal = {Perspektiven der Wirtschaftspolitik}, number = {3}, publisher = {De Gruyter}, address = {Berlin}, issn = {1465-6493}, doi = {10.1515/pwp-2021-0051}, pages = {165 -- 199}, year = {2022}, abstract = {Steuern und Abgaben auf Produkte oder Verbrauch mit gesellschaftlichen Folgekosten (externe Kosten) - sogenannte Pigou- oder Lenkungssteuern - sind ein gesellschaftliches „Win-Win-Instrument". Sie verbessern die Wohlfahrt und sch{\"u}tzen gleichzeitig die Umwelt und das Klima. Dies wird erreicht, indem umweltsch{\"a}digende Aktivit{\"a}ten einen Preis bekommen, der m{\"o}glichst exakt der H{\"o}he des Schadens entspricht. Eine konsequente Bepreisung der externen Kosten nach diesem Prinzip k{\"o}nnte in Deutschland erhebliche zus{\"a}tzliche Einnahmen erbringen: Basierend auf bisherigen Studien zu externen Kosten w{\"a}ren zus{\"a}tzliche Einnahmen in der Gr{\"o}ßenordnung von 348 bis 564 Milliarden Euro pro Jahr (44 bis 71 Prozent der gesamten Steuereinnahmen) m{\"o}glich. Die Autoren warnen allerdings, dass die Bezifferung der externen Kosten mit erheblichen Unsicherheiten verbunden ist. Damit Lenkungssteuern und -abgaben ihre positiven Lenkungs- und Wohlstandseffekte voll entfalten k{\"o}nnen, seien zudem institutionelle Reformen notwendig.}, language = {de} } @article{AndrianovKlamrothSaalfranketal.2005, author = {Andrianov, Igor V. and Klamroth, Tillmann and Saalfrank, Peter and Bovensiepen, U. and Gahl, Cornelius and Wolf, M. M.}, title = {Quantum theoretical study of electron solvation dynamics in ice layers on a Cu(111) surface}, issn = {0021-9606}, year = {2005}, abstract = {Recent experiments using time- and angle-resolved two-photon photoemission (2PPE) spectroscopy at metal/polar adsorbate interfaces succeeded in time-dependent analysis of the process of electron solvation. A fully quantum mechanical, two-dimensional simulation of this process, which explicitly includes laser excitation, is presented here, confirming the origin of characteristic features, such as the experimental observation of an apparently negative dispersion. The inference of the spatial extent of the localized electron states from the angular dependence of the 2PPE spectra has been found to be non-trivial and system-dependent. (C) 2005 American Institute of Physics}, language = {en} } @article{SchmidtSaxenhoferDrewesetal.2016, author = {Schmidt, Sabrina and Saxenhofer, Moritz and Drewes, Stephan and Schlegel, Mathias and Wanka, Konrad M. and Frank, Raphael and Klimpel, Sven and von Blanckenhagen, Felix and Maaz, Denny and Herden, Christiane and Freise, Jona and Wolf, Ronny and Stubbe, Michael and Borkenhagen, Peter and Ansorge, Hermann and Eccard, Jana and Lang, Johannes and Jourdain, Elsa and Jacob, Jens and Marianneau, Philippe and Heckel, Gerald and Ulrich, Rainer G{\"u}nter}, title = {High genetic structuring of Tula hantavirus}, series = {Archives of virology}, volume = {161}, journal = {Archives of virology}, publisher = {Springer}, address = {Wien}, issn = {0304-8608}, doi = {10.1007/s00705-016-2762-6}, pages = {1135 -- 1149}, year = {2016}, abstract = {Tula virus (TULV) is a vole-associated hantavirus with low or no pathogenicity to humans. In the present study, 686 common voles (Microtus arvalis), 249 field voles (Microtus agrestis) and 30 water voles (Arvicola spec.) were collected at 79 sites in Germany, Luxembourg and France and screened by RT-PCR and TULV-IgG ELISA. TULV-specific RNA and/or antibodies were detected at 43 of the sites, demonstrating a geographically widespread distribution of the virus in the studied area. The TULV prevalence in common voles (16.7 \%) was higher than that in field voles (9.2 \%) and water voles (10.0 \%). Time series data at ten trapping sites showed evidence of a lasting presence of TULV RNA within common vole populations for up to 34 months, although usually at low prevalence. Phylogenetic analysis demonstrated a strong genetic structuring of TULV sequences according to geography and independent of the rodent species, confirming the common vole as the preferential host, with spillover infections to co-occurring field and water voles. TULV phylogenetic clades showed a general association with evolutionary lineages in the common vole as assessed by mitochondrial DNA sequences on a large geographical scale, but with local-scale discrepancies in the contact areas.}, language = {en} } @article{TongWirthKirschetal.2015, author = {Tong, Yujin and Wirth, Jonas and Kirsch, Harald and Wolf, Martin and Saalfrank, Peter and Campen, Richard Kramer}, title = {Optically probing Al-O and O-H vibrations to characterize water adsorption and surface reconstruction on alpha-alumina: An experimental and theoretical study}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {142}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {5}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4906346}, pages = {12}, year = {2015}, abstract = {Oxide/water interfaces are ubiquitous in a wide variety of applications and the environment. Despite this ubiquity, and attendant decades of study, gaining molecular level insight into water/oxide interaction has proven challenging. In part, this challenge springs from a lack of tools to concurrently characterize changes in surface structure (i.e., water/oxide interaction from the perspective of the solid) and O-H population and local environment (i.e., water/oxide interaction from the water perspective). Here, we demonstrate the application of surface specific vibrational spectroscopy to the characterization of the interaction of the paradigmatic alpha-Al2O3(0001) surface and water. By probing both the interfacial Al-O (surface phonon) and O-H spectral response, we characterize this interaction from both perspectives. Through electronic structure calculation, we assign the interfacial Al-O response and rationalize its changes on surface dehydroxylation and reconstruction. Because our technique is all-optical and interface specific, it is equally applicable to oxide surfaces in vacuum, ambient atmospheres and at the solid/liquid interface. Application of this approach to additional alumina surfaces and other oxides thus seems likely to significantly expand our understanding of how water meets oxide surfaces and thus the wide variety of phenomena this interaction controls. (C) 2015 AIP Publishing LLC.}, language = {en} } @article{KirschWirthTongetal.2014, author = {Kirsch, Harald and Wirth, Jonas and Tong, Yujin and Wolf, Martin and Saalfrank, Peter and Campen, Richard Kramer}, title = {Experimental characterization of unimolecular water dissociative adsorption on alpha-alumina}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {118}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {25}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/jp502106t}, pages = {13623 -- 13630}, year = {2014}, abstract = {alpha-Al2O3 surfaces are common in both engineered applications and the environment. Much prior work indicates that their properties, e.g., reactivity, polarity, and charge, change dramatically on interaction with water. Perhaps the simplest question that can be asked of alpha-Al2O3/water interaction is how a single water molecule interacts with the most stable alpha-Al2O3 surface: the alpha-Al2O3(0001). Over the last 15 years, a series of theoretical studies have found that water dissociatively adsorbs on alpha-Al2O3(0001) through two channels. However, to our knowledge no experimental evidence of these dissociation pathways has appeared. By combining sample preparation via supersonic molecular beam dosing, sample characterization via coherent, surface specific vibrational spectroscopy and electronic structure theory, we report the first experimental observation of reaction products of each, theoretically predicted, dissociation channel. These results thus overcome a 15 year old experiment/theory disconnect and make possible a variety of intriguing experiments that promise to provide significant new insights into water/Al2O3 and water/oxide interaction more generally.}, language = {en} } @article{KamjunkeBeckersHerzsprungetal.2022, author = {Kamjunke, Norbert and Beckers, Liza-Marie and Herzsprung, Peter and von T{\"u}mpling, Wolf and Lechtenfeld, Oliver and Tittel, J{\"o}rg and Risse-Buhl, Ute and Rode, Michael and Wachholz, Alexander and Kallies, Rene and Schulze, Tobias and Krauss, Martin and Brack, Werner and Comero, Sara and Gawlik, Bernd Manfred and Skejo, Hello and Tavazzi, Simona and Mariani, Giulio and Borchardt, Dietrich and Weitere, Markus}, title = {Lagrangian profiles of riverine autotrophy, organic matter transformation, and micropollutants at extreme drought}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {828}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2022.154243}, pages = {14}, year = {2022}, abstract = {On their way from inland to the ocean, flowing water bodies, their constituents and their biotic communities are ex-posed to complex transport and transformation processes. However, detailed process knowledge as revealed by La-grangian measurements adjusted to travel time is rare in large rivers, in particular at hydrological extremes. To fill this gap, we investigated autotrophic processes, heterotrophic carbon utilization, and micropollutant concentrations applying a Lagrangian sampling design in a 600 km section of the River Elbe (Germany) at historically low discharge. Under base flow conditions, we expect the maximum intensity of instream processes and of point source impacts. Phy-toplankton biomass and photosynthesis increased from upstream to downstream sites but maximum chlorophyll con-centration was lower than at mean discharge. Concentrations of dissolved macronutrients decreased to almost complete phosphate depletion and low nitrate values. The longitudinal increase of bacterial abundance and production was less pronounced than in wetter years and bacterial community composition changed downstream. Molecular analyses revealed a longitudinal increase of many DOM components due to microbial production, whereas saturated lipid-like DOM, unsaturated aromatics and polyphenols, and some CHOS surfactants declined. In decomposition exper-iments, DOM components with high O/C ratios and high masses decreased whereas those with low O/C ratios, low masses, and high nitrogen content increased at all sites. Radiocarbon age analyses showed that DOC was relatively old (890-1870 years B.P.), whereas the mineralized fraction was much younger suggesting predominant oxidation of algal lysis products and exudates particularly at downstream sites. Micropollutants determining toxicity for algae (terbuthylazine, terbutryn, isoproturon and lenacil), hexachlorocyclohexanes and DDTs showed higher concentrations from the middle towards the downstream part but calculated toxicity was not negatively correlated to phytoplankton. Overall, autotrophic and heterotrophic process rates and micropollutant concentrations increased from up-to down-stream reaches, but their magnitudes were not distinctly different to conditions at medium discharges.}, language = {en} } @article{HegerBernardVerdierGessleretal.2019, author = {Heger, Tina and Bernard-Verdier, Maud and Gessler, Arthur and Greenwood, Alex D. and Grossart, Hans-Peter and Hilker, Monika and Keinath, Silvia and Kowarik, Ingo and K{\"u}ffer, Christoph and Marquard, Elisabeth and Mueller, Johannes and Niemeier, Stephanie and Onandia, Gabriela and Petermann, Jana S. and Rillig, Matthias C. and Rodel, Mark-Oliver and Saul, Wolf-Christian and Schittko, Conrad and Tockner, Klement and Joshi, Jasmin Radha and Jeschke, Jonathan M.}, title = {Towards an Integrative, Eco-Evolutionary Understanding of Ecological Novelty: Studying and Communicating Interlinked Effects of Global Change}, series = {Bioscience}, volume = {69}, journal = {Bioscience}, number = {11}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0006-3568}, doi = {10.1093/biosci/biz095}, pages = {888 -- 899}, year = {2019}, abstract = {Global change has complex eco-evolutionary consequences for organisms and ecosystems, but related concepts (e.g., novel ecosystems) do not cover their full range. Here we propose an umbrella concept of "ecological novelty" comprising (1) a site-specific and (2) an organism-centered, eco-evolutionary perspective. Under this umbrella, complementary options for studying and communicating effects of global change on organisms, ecosystems, and landscapes can be included in a toolbox. This allows researchers to address ecological novelty from different perspectives, e.g., by defining it based on (a) categorical or continuous measures, (b) reference conditions related to sites or organisms, and (c) types of human activities. We suggest striving for a descriptive, non-normative usage of the term "ecological novelty" in science. Normative evaluations and decisions about conservation policies or management are important, but require additional societal processes and engagement with multiple stakeholders.}, language = {en} } @misc{KalinkatCabralDarwalletal.2017, author = {Kalinkat, Gregor and Cabral, Juliano Sarmento and Darwall, William and Ficetola, G. Francesco and Fisher, Judith L. and Giling, Darren P. and Gosselin, Marie-Pierre and Grossart, Hans-Peter and Jaehnig, Sonja C. and Jeschke, Jonathan M. and Knopf, Klaus and Larsen, Stefano and Onandia, Gabriela and Paetzig, Marlene and Saul, Wolf-Christian and Singer, Gabriel and Sperfeld, Erik and Jaric, Ivan}, title = {Flagship umbrella species needed for the conservation of overlooked aquatic biodiversity}, series = {Conservation biology : the journal of the Society for Conservation Biology}, volume = {31}, journal = {Conservation biology : the journal of the Society for Conservation Biology}, publisher = {Wiley}, address = {Hoboken}, issn = {0888-8892}, doi = {10.1111/cobi.12813}, pages = {481 -- 485}, year = {2017}, language = {en} } @article{MayerLeverPicconietal.2022, author = {Mayer, Dennis and Lever, Fabiano and Picconi, David and Metje, Jan and Ališauskas, Skirmantas and Calegari, Francesca and D{\"u}sterer, Stefan and Ehlert, Christopher and Feifel, Raimund and Niebuhr, Mario and Manschwetus, Bastian and Kuhlmann, Marion and Mazza, Tommaso and Robinson, Matthew Scott and Squibb, Richard J. and Trabattoni, Andrea and Wallner, M{\aa}ns and Saalfrank, Peter and Wolf, Thomas J. A. and G{\"u}hr, Markus}, title = {Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy}, series = {Nature communications}, volume = {13}, journal = {Nature communications}, number = {1}, publisher = {Nature Research}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-021-27908-y}, pages = {9}, year = {2022}, abstract = {Imaging the charge flow in photoexcited molecules would provide key information on photophysical and photochemical processes. Here the authors demonstrate tracking in real time after photoexcitation the change in charge density at a specific site of 2-thiouracil using time-resolved X-ray photoelectron spectroscopy. The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.}, language = {en} }