@article{AmbergausdemMooreBekketal.2022, author = {Amberg, Maximilian and aus dem Moore, Nils and Bekk, Anke and Bergmann, Tobias and Edenhofer, Ottmar and Flachsland, Christian and George, Jan and Haywood, Luke and Heinemann, Maik and Held, Anne and Kalkuhl, Matthias and Kellner, Maximilian and Koch, Nicolas and Luderer, Gunnar and Meyer, Henrika and Nikodinoska, Dragana and Pahle, Michael and Roolfs, Christina and Schill, Wolf-Peter}, title = {Reformoptionen f{\"u}r ein nachhaltiges Steuer- und Abgabensystem}, series = {Perspektiven der Wirtschaftspolitik}, volume = {23}, journal = {Perspektiven der Wirtschaftspolitik}, number = {3}, publisher = {De Gruyter}, address = {Berlin}, issn = {1465-6493}, doi = {10.1515/pwp-2021-0051}, pages = {165 -- 199}, year = {2022}, abstract = {Steuern und Abgaben auf Produkte oder Verbrauch mit gesellschaftlichen Folgekosten (externe Kosten) - sogenannte Pigou- oder Lenkungssteuern - sind ein gesellschaftliches „Win-Win-Instrument". Sie verbessern die Wohlfahrt und sch{\"u}tzen gleichzeitig die Umwelt und das Klima. Dies wird erreicht, indem umweltsch{\"a}digende Aktivit{\"a}ten einen Preis bekommen, der m{\"o}glichst exakt der H{\"o}he des Schadens entspricht. Eine konsequente Bepreisung der externen Kosten nach diesem Prinzip k{\"o}nnte in Deutschland erhebliche zus{\"a}tzliche Einnahmen erbringen: Basierend auf bisherigen Studien zu externen Kosten w{\"a}ren zus{\"a}tzliche Einnahmen in der Gr{\"o}ßenordnung von 348 bis 564 Milliarden Euro pro Jahr (44 bis 71 Prozent der gesamten Steuereinnahmen) m{\"o}glich. Die Autoren warnen allerdings, dass die Bezifferung der externen Kosten mit erheblichen Unsicherheiten verbunden ist. Damit Lenkungssteuern und -abgaben ihre positiven Lenkungs- und Wohlstandseffekte voll entfalten k{\"o}nnen, seien zudem institutionelle Reformen notwendig.}, language = {de} } @misc{MayerLeverPicconietal.2022, author = {Mayer, Dennis and Lever, Fabiano and Picconi, David and Metje, Jan and Ališauskas, Skirmantas and Calegari, Francesca and D{\"u}sterer, Stefan and Ehlert, Christopher and Feifel, Raimund and Niebuhr, Mario and Manschwetus, Bastian and Kuhlmann, Marion and Mazza, Tommaso and Robinson, Matthew Scott and Squibb, Richard James and Trabattoni, Andrea and Wallner, M{\aa}ns and Saalfrank, Peter and Wolf, Thomas J. A. and G{\"u}hr, Markus}, title = {Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1301}, issn = {1866-8372}, doi = {10.25932/publishup-57744}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577442}, pages = {9}, year = {2022}, abstract = {The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.}, language = {en} } @article{KamjunkeBeckersHerzsprungetal.2022, author = {Kamjunke, Norbert and Beckers, Liza-Marie and Herzsprung, Peter and von T{\"u}mpling, Wolf and Lechtenfeld, Oliver and Tittel, J{\"o}rg and Risse-Buhl, Ute and Rode, Michael and Wachholz, Alexander and Kallies, Rene and Schulze, Tobias and Krauss, Martin and Brack, Werner and Comero, Sara and Gawlik, Bernd Manfred and Skejo, Hello and Tavazzi, Simona and Mariani, Giulio and Borchardt, Dietrich and Weitere, Markus}, title = {Lagrangian profiles of riverine autotrophy, organic matter transformation, and micropollutants at extreme drought}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {828}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2022.154243}, pages = {14}, year = {2022}, abstract = {On their way from inland to the ocean, flowing water bodies, their constituents and their biotic communities are ex-posed to complex transport and transformation processes. However, detailed process knowledge as revealed by La-grangian measurements adjusted to travel time is rare in large rivers, in particular at hydrological extremes. To fill this gap, we investigated autotrophic processes, heterotrophic carbon utilization, and micropollutant concentrations applying a Lagrangian sampling design in a 600 km section of the River Elbe (Germany) at historically low discharge. Under base flow conditions, we expect the maximum intensity of instream processes and of point source impacts. Phy-toplankton biomass and photosynthesis increased from upstream to downstream sites but maximum chlorophyll con-centration was lower than at mean discharge. Concentrations of dissolved macronutrients decreased to almost complete phosphate depletion and low nitrate values. The longitudinal increase of bacterial abundance and production was less pronounced than in wetter years and bacterial community composition changed downstream. Molecular analyses revealed a longitudinal increase of many DOM components due to microbial production, whereas saturated lipid-like DOM, unsaturated aromatics and polyphenols, and some CHOS surfactants declined. In decomposition exper-iments, DOM components with high O/C ratios and high masses decreased whereas those with low O/C ratios, low masses, and high nitrogen content increased at all sites. Radiocarbon age analyses showed that DOC was relatively old (890-1870 years B.P.), whereas the mineralized fraction was much younger suggesting predominant oxidation of algal lysis products and exudates particularly at downstream sites. Micropollutants determining toxicity for algae (terbuthylazine, terbutryn, isoproturon and lenacil), hexachlorocyclohexanes and DDTs showed higher concentrations from the middle towards the downstream part but calculated toxicity was not negatively correlated to phytoplankton. Overall, autotrophic and heterotrophic process rates and micropollutant concentrations increased from up-to down-stream reaches, but their magnitudes were not distinctly different to conditions at medium discharges.}, language = {en} } @article{MayerLeverPicconietal.2022, author = {Mayer, Dennis and Lever, Fabiano and Picconi, David and Metje, Jan and Ališauskas, Skirmantas and Calegari, Francesca and D{\"u}sterer, Stefan and Ehlert, Christopher and Feifel, Raimund and Niebuhr, Mario and Manschwetus, Bastian and Kuhlmann, Marion and Mazza, Tommaso and Robinson, Matthew Scott and Squibb, Richard J. and Trabattoni, Andrea and Wallner, M{\aa}ns and Saalfrank, Peter and Wolf, Thomas J. A. and G{\"u}hr, Markus}, title = {Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy}, series = {Nature communications}, volume = {13}, journal = {Nature communications}, number = {1}, publisher = {Nature Research}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-021-27908-y}, pages = {9}, year = {2022}, abstract = {Imaging the charge flow in photoexcited molecules would provide key information on photophysical and photochemical processes. Here the authors demonstrate tracking in real time after photoexcitation the change in charge density at a specific site of 2-thiouracil using time-resolved X-ray photoelectron spectroscopy. The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.}, language = {en} } @article{MayerLeverPicconietal.2022, author = {Mayer, Dennis and Lever, Fabiano and Picconi, David and Metje, Jan and Ališauskas, Skirmantas and Calegari, Francesca and D{\"u}sterer, Stefan and Ehlert, Christopher and Feifel, Raimund and Niebuhr, Mario and Manschwetus, Bastian and Kuhlmann, Marion and Mazza, Tommaso and Robinson, Matthew Scott and Squibb, Richard James and Trabattoni, Andrea and Wallner, M{\aa}ns and Saalfrank, Peter and Wolf, Thomas J. A. and G{\"u}hr, Markus}, title = {Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, publisher = {Springer Nature}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-021-27908-y}, pages = {9}, year = {2022}, abstract = {The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.}, language = {en} }