@misc{SchulzeUtechtMoldtetal.2015, author = {Schulze, Michael and Utecht, Manuel Martin and Moldt, Thomas and Przyrembel, Daniel and Gahl, Cornelius and Weinelt, Martin and Saalfrank, Peter and Tegeder, Petra}, title = {Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-81198}, year = {2015}, abstract = {The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16\% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10-18 cm2 for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions.}, language = {en} } @article{SchulzeUtechtMoldtetal.2015, author = {Schulze, Michael and Utecht, Manuel Martin and Moldt, Thomas and Przyrembel, Daniel and Gahl, Cornelius and Weinelt, Martin and Saalfrank, Peter and Tegeder, Petra}, title = {Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {27}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp03093e}, pages = {18079 -- 18086}, year = {2015}, abstract = {The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16\% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10(-18) cm(2) for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions.}, language = {en} } @article{SchulzeUtechtMoldtetal.2015, author = {Schulze, Michael and Utecht, Manuel Martin and Moldt, Thomas and Przyrembel, Daniel and Gahl, Cornelius and Weinelt, Martin and Saalfrank, Peter and Tegeder, Petra}, title = {Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, volume = {27}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, number = {17}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp03093e}, pages = {18079 -- 18086}, year = {2015}, abstract = {The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16\% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10-18 cm2 for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions.}, language = {en} } @article{ShaydukNavirianLeitenbergeretal.2011, author = {Shayduk, Roman and Navirian, Hengameh and Leitenberger, Wolfram and Goldshteyn, Jevgenij and Vrejoiu, Ionela and Weinelt, Martin and Gaal, Peter and Herzog, Marc and von Korff Schmising, Clemens and Bargheer, Matias}, title = {Nanoscale heat transport studied by high-resolution time-resolved x-ray diffraction}, series = {New journal of physics : the open-access journal for physics}, volume = {13}, journal = {New journal of physics : the open-access journal for physics}, number = {11}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/13/9/093032}, pages = {11}, year = {2011}, abstract = {We report on synchrotron-based high-repetition rate ultrafast x-ray diffraction (UXRD) experiments monitoring the transport of heat from an epitaxial La(0.7)Sr(0.3)MnO(3)/SrTiO(3) superlattice (SL) into the substrate on timescales from 100 ps to 4 mu s. Transient thermal lattice expansion was determined with an accuracy of 10(-7), corresponding to a sensitivity to temperature changes down to 0.01 K. We follow the heat flow within the SL and into the substrate after the impulsive laser heating leads to a small temperature rise of Delta T = 6 K. The transient lattice temperature can be simulated very well using the bulk heat conductivities. This contradicts the interpretation of previous UXRD measurements, which predicted a long-lasting expansion of SrRuO(3) for more than 200 ps. The disagreement could be resolved by assuming that the heat conductivity changes in the first hundred picoseconds.}, language = {en} } @article{WeineltKuhntSarntheinLotichiusetal.2001, author = {Weinelt, Mara and Kuhnt, Wolfgang and Sarnthein-Lotichius, Johann Michael and Altenbach, Alexander V. and Costello, O. and Erlenkeuser, Helmut and Mathiessen, J. and Pflaumann, Uwe and Simstich, J. and Struck, J. and Thies, A. and Trauth, Martin H. and Vogelsang, E.}, title = {Paleoceanographic proxies in the northern North Atlantic}, isbn = {3-540-67231-1}, year = {2001}, language = {en} } @article{SchmidtHagenBreteetal.2010, author = {Schmidt, Roland and Hagen, Sebastian and Brete, Daniel and Carley, Robert and Gahl, Cornelius and Dokic, Jadranka and Saalfrank, Peter and Hecht, Stefan and Tegeder, Petra and Weinelt, Martin}, title = {On the electronic and geometrical structure of the trans- and cis-isomer of tetra-tert-butyl-azobenzene on Au(111)}, issn = {1463-9076}, doi = {10.1039/B924409c}, year = {2010}, abstract = {Near edge X-ray absorption. ne structure and X-ray photoelectron spectroscopy have been employed to follow the reversible trans to cis isomerization of tetra-tert-butyl-azobenzene (TBA) adsorbed on Au(111). For one monolayer the molecules adopt an adsorption geometry characteristic of the trans-TBA isomer. The azo-bridge (N = N) is aligned nearly parallel to the surface and the phenyl rings exhibit a planar orientation with a small tilt angle <= 4 degrees with respect to the surface normal. Illumination of the molecular layer at 455 nm triggers the trans to cis isomerization which is associated with a pronounced change of the geometrical and electronic structure. The N1s to pi* transition of the central azo-bridge shifts by 0.45 +/- 0.05 eV to higher photon energy and the transition dipole moment (TDM) is tilted by 59 +/- 5 degrees with respect to the surface normal. The pi-system of one phenyl ring is tilted by about 30 degrees with respect to the surface normal, while the second ring plane is oriented nearly perpendicular to the surface. This reorientation is supported by a shift and broadening of the C-H resonances associated with the tert-butyl legs of the molecule. These findings support a configuration of the photo-switched TBA molecule on Au(111) which is comparable to the cis-isomer of the free molecule. In the photo-stationary state 53 +/- 5\% of the TBA molecules are switched to the cis configuration. Thermal activation induces the back reaction to trans-TBA.}, language = {en} }