@article{ZhangCaoXuetal.2022, author = {Zhang, Naimeng and Cao, Xianyong and Xu, Qinghai and Huang, Xiaozhong and Herzschuh, Ulrike and Shen, Zhongwei and Peng, Wei and Liu, Sisi and Wu, Duo and Wang, Jian and Xia, Huan and Zhang, Dongju and Chen, Fahu}, title = {Vegetation change and human-environment interactions in the Qinghai Lake Basin, northeastern Tibetan Plateau, since the last deglaciation}, series = {Catena}, volume = {210}, journal = {Catena}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2021.105892}, pages = {14}, year = {2022}, abstract = {The nature of the interaction between prehistoric humans and their environment, especially the vegetation, has long been of interest. The Qinghai Lake Basin in North China is well-suited to exploring the interactions between prehistoric humans and vegetation in the Tibetan Plateau, because of the comparatively dense distribution of archaeological sites and the ecologically fragile environment. Previous pollen studies of Qinghai Lake have enabled a detailed reconstruction of the regional vegetation, but they have provided relatively little information on vegetation change within the Qinghai Lake watershed. To address the issue we conducted a pollen-based vegetation reconstruction for an archaeological site (YWY), located on the southern shore of Qinghai Lake. We used high temporal-resolution pollen records from the YWY site and from Qinghai Lake, spanning the interval since the last deglaciation (15.3 kyr BP to the present) to quantitatively reconstruct changes in the local and regional vegetation using Landscape Reconstruction Algorithm models. The results show that, since the late glacial, spruce forest grew at high altitudes in the surrounding mountains, while the lakeshore environment was occupied mainly by shrub-steppe. From the lateglacial to the middle Holocene, coniferous woodland began to expand downslope and reached the YWY site at 7.1 kyr BP. The living environment of the local small groups of Paleolithic-Epipaleolithic humans (during 15.3-13.1 kyr BP and 9-6.4 kyr BP) changed from shrub-steppe to coniferous forest-steppe. The pollen record shows no evidence of pronounced changes in the vegetation community corresponding to human activity. However, based on a comparison of the local and regional vegetation reconstructions, low values of biodiversity and a significant increase in two indicators of vegetation degradation, Chenopodiaceae and Rosaceae, suggest that prehistoric hunters-gatherers likely disturbed the local vegetation during 9.0-6.4 kyr BP. Our findings are a preliminary attempt to study human-environment interactions at Paleolithic-Epipaleolithic sites in the region, and they contribute to ongoing environmental archaeology research in the Tibetan Plateau.}, language = {en} } @misc{XieJiaRollsetal.2021, author = {Xie, Chao and Jia, Tianye and Rolls, Edmund T. and Robbins, Trevor W. and Sahakian, Barbara J. and Zhang, Jie and Liu, Zhaowen and Cheng, Wei and Luo, Qiang and Zac Lo, Chun-Yi and Schumann, Gunter and Feng, Jianfeng and Wang, He and Banaschewski, Tobias and Barker, Gareth J. and Bokde, Arun L.W. and B{\"u}chel, Christian and Quinlan, Erin Burke and Desrivi{\`e}res, Sylvane and Flor, Herta and Grigis, Antoine and Garavan, Hugh and Gowland, Penny and Heinz, Andreas and Hohmann, Sarah and Ittermann, Bernd and Martinot, Jean-Luc and Paill{\`e}re Martinot, Marie-Laure and Nees, Frauke and Papadopoulos Orfanos, Dimitri and Paus, Tom{\´a}š and Poustka, Luise and Fr{\"o}hner, Juliane H. and Smolka, Michael N. and Walter, Henrik and Whelan, Robert}, title = {Reward versus nonreward sensitivity of the medial versus lateral orbitofrontal cortex relates to the severity of depressive symptoms}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {3}, issn = {1866-8364}, doi = {10.25932/publishup-55788}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557882}, pages = {13}, year = {2021}, abstract = {BACKGROUND: The orbitofrontal cortex (OFC) is implicated in depression. The hypothesis investigated was whether the OFC sensitivity to reward and nonreward is related to the severity of depressive symptoms. METHODS: Activations in the monetary incentive delay task were measured in the IMAGEN cohort at ages 14 years (n = 1877) and 19 years (n = 1140) with a longitudinal design. Clinically relevant subgroups were compared at ages 19 (high-severity group: n = 116; low-severity group: n = 206) and 14. RESULTS: The medial OFC exhibited graded activation increases to reward, and the lateral OFC had graded activation increases to nonreward. In this general population, the medial and lateral OFC activations were associated with concurrent depressive symptoms at both ages 14 and 19 years. In a stratified high-severity depressive symptom group versus control group comparison, the lateral OFC showed greater sensitivity for the magnitudes of activations related to nonreward in the high-severity group at age 19 (p = .027), and the medial OFC showed decreased sensitivity to the reward magnitudes in the high-severity group at both ages 14 (p = .002) and 19 (p = .002). In a longitudinal design, there was greater sensitivity to nonreward of the lateral OFC at age 14 for those who exhibited high depressive symptom severity later at age 19 (p = .003). CONCLUSIONS: Activations in the lateral OFC relate to sensitivity to not winning, were associated with high depressive symptom scores, and at age 14 predicted the depressive symptoms at ages 16 and 19. Activations in the medial OFC were related to sensitivity to winning, and reduced reward sensitivity was associated with concurrent high depressive symptom scores.}, language = {en} } @article{XieJiaRollsetal.2021, author = {Xie, Chao and Jia, Tianye and Rolls, Edmund T. and Robbins, Trevor W. and Sahakian, Barbara J. and Zhang, Jie and Liu, Zhaowen and Cheng, Wei and Luo, Qiang and Zac Lo, Chun-Yi and Schumann, Gunter and Feng, Jianfeng and Wang, He and Banaschewski, Tobias and Barker, Gareth J. and Bokde, Arun L.W. and B{\"u}chel, Christian and Quinlan, Erin Burke and Desrivi{\`e}res, Sylvane and Flor, Herta and Grigis, Antoine and Garavan, Hugh and Gowland, Penny and Heinz, Andreas and Hohmann, Sarah and Ittermann, Bernd and Martinot, Jean-Luc and Paill{\`e}re Martinot, Marie-Laure and Nees, Frauke and Papadopoulos Orfanos, Dimitri and Paus, Tom{\´a}š and Poustka, Luise and Fr{\"o}hner, Juliane H. and Smolka, Michael N. and Walter, Henrik and Whelan, Robert}, title = {Reward versus nonreward sensitivity of the medial versus lateral orbitofrontal cortex relates to the severity of depressive symptoms}, series = {Biological Psychiatry: Cognitive Neuroscience and Neuroimaging}, volume = {6}, journal = {Biological Psychiatry: Cognitive Neuroscience and Neuroimaging}, number = {3}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {2451-9022}, doi = {10.1016/j.bpsc.2020.08.017}, pages = {259 -- 269}, year = {2021}, abstract = {BACKGROUND: The orbitofrontal cortex (OFC) is implicated in depression. The hypothesis investigated was whether the OFC sensitivity to reward and nonreward is related to the severity of depressive symptoms. METHODS: Activations in the monetary incentive delay task were measured in the IMAGEN cohort at ages 14 years (n = 1877) and 19 years (n = 1140) with a longitudinal design. Clinically relevant subgroups were compared at ages 19 (high-severity group: n = 116; low-severity group: n = 206) and 14. RESULTS: The medial OFC exhibited graded activation increases to reward, and the lateral OFC had graded activation increases to nonreward. In this general population, the medial and lateral OFC activations were associated with concurrent depressive symptoms at both ages 14 and 19 years. In a stratified high-severity depressive symptom group versus control group comparison, the lateral OFC showed greater sensitivity for the magnitudes of activations related to nonreward in the high-severity group at age 19 (p = .027), and the medial OFC showed decreased sensitivity to the reward magnitudes in the high-severity group at both ages 14 (p = .002) and 19 (p = .002). In a longitudinal design, there was greater sensitivity to nonreward of the lateral OFC at age 14 for those who exhibited high depressive symptom severity later at age 19 (p = .003). CONCLUSIONS: Activations in the lateral OFC relate to sensitivity to not winning, were associated with high depressive symptom scores, and at age 14 predicted the depressive symptoms at ages 16 and 19. Activations in the medial OFC were related to sensitivity to winning, and reduced reward sensitivity was associated with concurrent high depressive symptom scores.}, language = {en} } @article{WangOswaldGraeffetal.2019, author = {Wang, Wei-shi and Oswald, Sascha and Gr{\"a}ff, Thomas and Lensing, Hermann Josef and Liu, Tie and Strasser, Daniel and Munz, Matthias}, title = {Impact of river reconstruction on groundwater flow during bank filtration assessed by transient three-dimensional modelling of flow and heat transport}, series = {Hydrogeology journal : official journal of the International Association of Hydrogeologists}, volume = {28}, journal = {Hydrogeology journal : official journal of the International Association of Hydrogeologists}, number = {2}, publisher = {Springer}, address = {Berlin ; Heidelberg [u.a.]}, issn = {1431-2174}, doi = {10.1007/s10040-019-02063-3}, pages = {723 -- 743}, year = {2019}, abstract = {Bank filtration (BF) is an established indirect water-treatment technology. The quality of water gained via BF depends on the subsurface capture zone, the mixing ratio (river water versus ambient groundwater), spatial and temporal distribution of subsurface travel times, and subsurface temperature patterns. Surface-water infiltration into the adjacent aquifer is determined by the local hydraulic gradient and riverbed permeability, which could be altered by natural clogging, scouring and artificial decolmation processes. The seasonal behaviour of a BF system in Germany, and its development during and about 6 months after decolmation (canal reconstruction), was observed with a long-term monitoring programme. To quantify the spatial and temporal variation in the BF system, a transient flow and heat transport model was implemented and two model scenarios, 'with' and 'without' canal reconstruction, were generated. Overall, the simulated water heads and temperatures matched those observed. Increased hydraulic connection between the canal and aquifer caused by the canal reconstruction led to an increase of similar to 23\% in the already high share of BF water abstracted by the nearby waterworks. Subsurface travel-time distribution substantially shifted towards shorter travel times. Flow paths with travel times <200 days increased by similar to 10\% and those with <300 days by 15\%. Generally, the periodic temperature signal, and the summer and winter temperature extrema, increased and penetrated deeper into the aquifer. The joint hydrological and thermal effects caused by the canal reconstruction might increase the potential of biodegradable compounds to further penetrate into the aquifer, also by potentially affecting the redox zonation in the aquifer.}, language = {en} } @techreport{BrodeurMikolaCooketal.2024, type = {Working Paper}, author = {Brodeur, Abel and Mikola, Derek and Cook, Nikolai and Brailey, Thomas and Briggs, Ryan and Gendre, Alexandra de and Dupraz, Yannick and Fiala, Lenka and Gabani, Jacopo and Gauriot, Romain and Haddad, Joanne and Lima, Goncalo and Ankel-Peters, J{\"o}rg and Dreber, Anna and Campbell, Douglas and Kattan, Lamis and Fages, Diego Marino and Mierisch, Fabian and Sun, Pu and Wright, Taylor and Connolly, Marie and Hoces de la Guardia, Fernando and Johannesson, Magnus and Miguel, Edward and Vilhuber, Lars and Abarca, Alejandro and Acharya, Mahesh and Adjisse, Sossou Simplice and Akhtar, Ahwaz and Lizardi, Eduardo Alberto Ramirez and Albrecht, Sabina and Andersen, Synve Nygaard and Andlib, Zubaria and Arrora, Falak and Ash, Thomas and Bacher, Etienne and Bachler, Sebastian and Bacon, F{\´e}lix and Bagues, Manuel and Balogh, Timea and Batmanov, Alisher and Barschkett, Mara and Basdil, B. Kaan and Dower, Jaromneda and Castek, Ondrej and Caviglia-Harris, Jill and Strand, Gabriella Chauca and Chen, Shi and Chzhen, Asya and Chung, Jong and Collins, Jason and Coppock, Alexander and Cordeau, Hugo and Couillard, Ben and Crechet, Jonathan and Crippa, Lorenzo and Cui, Jeanne and Czymara, Christian and Daarstad, Haley and Dao, Danh Chi and Dao, Dong and Schmandt, Marco David and Linde, Astrid de and Melo, Lucas De and Deer, Lachlan and Vera, Micole De and Dimitrova, Velichka and Dollbaum, Jan Fabian and Dollbaum, Jan Matti and Donnelly, Michael and Huynh, Luu Duc Toan and Dumbalska, Tsvetomira and Duncan, Jamie and Duong, Kiet Tuan and Duprey, Thibaut and Dworschak, Christoph and Ellingsrud, Sigmund and Elminejad, Ali and Eissa, Yasmine and Erhart, Andrea and Etingin-Frati, Giulian and Fatemi-Pour, Elaheh and Federice, Alexa and Feld, Jan and Fenig, Guidon and Firouzjaeiangalougah, Mojtaba and Fleisje, Erlend and Fortier-Chouinard, Alexandre and Engel, Julia Francesca and Fries, Tilman and Fortier, Reid and Fr{\´e}chet, Nadjim and Galipeau, Thomas and Gallegos, Sebasti{\´a}n and Gangji, Areez and Gao, Xiaoying and Garnache, Clo{\´e} and G{\´a}sp{\´a}r, Attila and Gavrilova, Evelina and Ghosh, Arijit and Gibney, Garreth and Gibson, Grant and Godager, Geir and Goff, Leonard and Gong, Da and Gonz{\´a}lez, Javier and Gretton, Jeremy and Griffa, Cristina and Grigoryeva, Idaliya and Grtting, Maja and Guntermann, Eric and Guo, Jiaqi and Gugushvili, Alexi and Habibnia, Hooman and H{\"a}ffner, Sonja and Hall, Jonathan D. and Hammar, Olle and Kordt, Amund Hanson and Hashimoto, Barry and Hartley, Jonathan S. and Hausladen, Carina I. and Havr{\´a}nek, Tom{\´a}š and Hazen, Jacob and He, Harry and Hepplewhite, Matthew and Herrera-Rodriguez, Mario and Heuer, Felix and Heyes, Anthony and Ho, Anson T. Y. and Holmes, Jonathan and Holzknecht, Armando and Hsu, Yu-Hsiang Dexter and Hu, Shiang-Hung and Huang, Yu-Shiuan and Huebener, Mathias and Huber, Christoph and Huynh, Kim P. and Irsova, Zuzana and Isler, Ozan and Jakobsson, Niklas and Frith, Michael James and Jananji, Rapha{\"e}l and Jayalath, Tharaka A. and Jetter, Michael and John, Jenny and Forshaw, Rachel Joy and Juan, Felipe and Kadriu, Valon and Karim, Sunny and Kelly, Edmund and Dang, Duy Khanh Hoang and Khushboo, Tazia and Kim, Jin and Kjellsson, Gustav and Kjelsrud, Anders and Kotsadam, Andreas and Korpershoek, Jori and Krashinsky, Lewis and Kundu, Suranjana and Kustov, Alexander and Lalayev, Nurlan and Langlois, Audr{\´e}e and Laufer, Jill and Lee-Whiting, Blake and Leibing, Andreas and Lenz, Gabriel and Levin, Joel and Li, Peng and Li, Tongzhe and Lin, Yuchen and Listo, Ariel and Liu, Dan and Lu, Xuewen and Lukmanova, Elvina and Luscombe, Alex and Lusher, Lester R. and Lyu, Ke and Ma, Hai and M{\"a}der, Nicolas and Makate, Clifton and Malmberg, Alice and Maitra, Adit and Mandas, Marco and Marcus, Jan and Margaryan, Shushanik and M{\´a}rk, Lili and Martignano, Andres and Marsh, Abigail and Masetto, Isabella and McCanny, Anthony and McManus, Emma and McWay, Ryan and Metson, Lennard and Kinge, Jonas Minet and Mishra, Sumit and Mohnen, Myra and M{\"o}ller, Jakob and Montambeault, Rosalie and Montpetit, S{\´e}bastien and Morin, Louis-Philippe and Morris, Todd and Moser, Scott and Motoki, Fabio and Muehlenbachs, Lucija and Musulan, Andreea and Musumeci, Marco and Nabin, Munirul and Nchare, Karim and Neubauer, Florian and Nguyen, Quan M. P. and Nguyen, Tuan and Nguyen-Tien, Viet and Niazi, Ali and Nikolaishvili, Giorgi and Nordstrom, Ardyn and N{\"u}, Patrick and Odermatt, Angela and Olson, Matt and ien, Henning and {\"O}lkers, Tim and Vert, Miquel Oliver i. and Oral, Emre and Oswald, Christian and Ousman, Ali and {\"O}zak, {\"O}mer and Pandey, Shubham and Pavlov, Alexandre and Pelli, Martino and Penheiro, Romeo and Park, RyuGyung and Martel, Eva P{\´e}rez and Petrovičov{\´a}, Tereza and Phan, Linh and Prettyman, Alexa and Proch{\´a}zka, Jakub and Putri, Aqila and Quandt, Julian and Qiu, Kangyu and Nguyen, Loan Quynh Thi and Rahman, Andaleeb and Rea, Carson H. and Reiremo, Adam and Ren{\´e}e, La{\"e}titia and Richardson, Joseph and Rivers, Nicholas and Rodrigues, Bruno and Roelofs, William and Roemer, Tobias and Rogeberg, Ole and Rose, Julian and Roskos-Ewoldsen, Andrew and Rosmer, Paul and Sabada, Barbara and Saberian, Soodeh and Salamanca, Nicolas and Sator, Georg and Sawyer, Antoine and Scates, Daniel and Schl{\"u}ter, Elmar and Sells, Cameron and Sen, Sharmi and Sethi, Ritika and Shcherbiak, Anna and Sogaolu, Moyosore and Soosalu, Matt and Srensen, Erik and Sovani, Manali and Spencer, Noah and Staubli, Stefan and Stans, Renske and Stewart, Anya and Stips, Felix and Stockley, Kieran and Strobel, Stephenson and Struby, Ethan and Tang, John and Tanrisever, Idil and Yang, Thomas Tao and Tastan, Ipek and Tatić, Dejan and Tatlow, Benjamin and Seuyong, F{\´e}raud Tchuisseu and Th{\´e}riault, R{\´e}mi and Thivierge, Vincent and Tian, Wenjie and Toma, Filip-Mihai and Totarelli, Maddalena and Tran, Van-Anh and Truong, Hung and Tsoy, Nikita and Tuzcuoglu, Kerem and Ubfal, Diego and Villalobos, Laura and Walterskirchen, Julian and Wang, Joseph Taoyi and Wattal, Vasudha and Webb, Matthew D. and Weber, Bryan and Weisser, Reinhard and Weng, Wei-Chien and Westheide, Christian and White, Kimberly and Winter, Jacob and Wochner, Timo and Woerman, Matt and Wong, Jared and Woodard, Ritchie and Wroński, Marcin and Yazbeck, Myra and Yang, Gustav Chung and Yap, Luther and Yassin, Kareman and Ye, Hao and Yoon, Jin Young and Yurris, Chris and Zahra, Tahreen and Zaneva, Mirela and Zayat, Aline and Zhang, Jonathan and Zhao, Ziwei and Yaolang, Zhong}, title = {Mass reproducibility and replicability}, series = {I4R discussion paper series}, journal = {I4R discussion paper series}, number = {107}, publisher = {Institute for Replication}, address = {Essen}, issn = {2752-1931}, pages = {250}, year = {2024}, abstract = {This study pushes our understanding of research reliability by reproducing and replicating claims from 110 papers in leading economic and political science journals. The analysis involves computational reproducibility checks and robustness assessments. It reveals several patterns. First, we uncover a high rate of fully computationally reproducible results (over 85\%). Second, excluding minor issues like missing packages or broken pathways, we uncover coding errors for about 25\% of studies, with some studies containing multiple errors. Third, we test the robustness of the results to 5,511 re-analyses. We find a robustness reproducibility of about 70\%. Robustness reproducibility rates are relatively higher for re-analyses that introduce new data and lower for re-analyses that change the sample or the definition of the dependent variable. Fourth, 52\% of re-analysis effect size estimates are smaller than the original published estimates and the average statistical significance of a re-analysis is 77\% of the original. Lastly, we rely on six teams of researchers working independently to answer eight additional research questions on the determinants of robustness reproducibility. Most teams find a negative relationship between replicators' experience and reproducibility, while finding no relationship between reproducibility and the provision of intermediate or even raw data combined with the necessary cleaning codes.}, language = {en} }