@article{FrommJokatRybergetal.2017, author = {Fromm, T. and Jokat, W. and Ryberg, T. and Behrmann, Jan H. and Haberland, C. and Weber, Michael}, title = {The onset of Walvis Ridge: Plume influence at the continental margin}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {716}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2017.03.011}, pages = {90 -- 107}, year = {2017}, abstract = {The opening of the South Atlantic is a classical example for a plume related continental breakup. Flood basalts are present on both conjugate margins as well as aseismic ridges connecting them with the current plume location at Tristan da Cunha. To determine the effect of the proposed plume head on the continental crust, we acquired wide-angle seismic data at the junction of the Walvis Ridge with the African continent and modelled the P-wave velocity structure in a forward approach. The profile extends 430 km along the ridge and continues onshore to a length of 720 km. Crustal velocities beneath the Walvis Ridge vary between 5.5 km/s and 7.0 km/s, a typical range for oceanic crust. The crustal thickness of 22 km, however, is approximately three times larger than of normal oceanic crust. The continent-ocean transition is characterized by 30 km thick crust with strong lateral velocity variations in the upper crust and a high-velocity lower crust (HVLC), where velocities reach up to 7.5 km/s. The HVLC is 100 to 130 km wider at the Walvis Ridge than it is farther south, and impinges onto the continental crust of the Kaoko fold belt. Such high seismic velocities indicate Mg-rich igneous material intruded into the continental crust during the initial rifting stage. However, the remaining continental crust seems unaffected by intrusions and the root of the 40 km-thick crust of the Kaoko belt is not thermally abraded. We conclude that the plume head did not modify the continental crust on a large scale, but caused rather local effects. Thus, it seems unlikely that a plume drove or initiated the breakup process. We further propose that the plume already existed underneath the continent prior to the breakup, and ponded melt erupted at emerging rift structures providing the magma for continental flood basalts. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{GroopCooperPerkovicetal.2017, author = {Groop, Per-Henrik and Cooper, Mark E. and Perkovic, Vlado and Hocher, Berthold and Kanasaki, Keizo and Haneda, Masakazu and Schernthaner, Guntram and Sharma, Kumar and Stanton, Robert C. and Toto, Robert and Cescutti, Jessica and Gordat, Maud and Meinicke, Thomas and Koitka-Weber, Audrey and Thiemann, Sandra and von Eynatten, Maximilian}, title = {Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction}, series = {Diabetes obesity \& metabolism : a journal of pharmacology and therapeutics}, volume = {19}, journal = {Diabetes obesity \& metabolism : a journal of pharmacology and therapeutics}, number = {11}, publisher = {Wiley}, address = {Hoboken}, issn = {1462-8902}, doi = {10.1111/dom.13041}, pages = {1610 -- 1619}, year = {2017}, abstract = {Aims: The MARLINA-T2D study (ClinicalTrials. gov, NCT01792518) was designed to investigate the glycaemic and renal effects of linagliptin added to standard-of-care in individuals with type 2 diabetes and albuminuria. Methods: A total of 360 individuals with type 2 diabetes, HbA1c 6.5\% to 10.0\% (48-86 mmol/ mol), estimated glomerular filtration rate (eGFR) >= 30 mL/min/1.73 m(2) and urinary albumin-tocreatinine ratio (UACR) 30-3000 mg/g despite single agent renin-angiotensin-system blockade were randomized to double-blind linagliptin (n = 182) or placebo (n = 178) for 24 weeks. The primary and key secondary endpoints were change from baseline in HbA1c at week 24 and time-weighted average of percentage change from baseline in UACR over 24 weeks, respectively. Results: Baseline mean HbA1c and geometric mean (gMean) UACR were 7.8\% +/- 0.9\% (62.2 +/- 9.6 mmol/mol) and 126 mg/g, respectively; 73.7\% and 20.3\% of participants had microalbuminuria or macroalbuminuria, respectively. After 24 weeks, the placebo-adjusted mean change in HbA1c from baseline was -0.60\% (-6.6 mmol/mol) (95\% confidence interval [CI], -0.78 to -0.43 [-8.5 to -4.7 mmol/mol]; P <.0001). The placebo-adjusted gMean for time-weighted average of percentage change in UACR from baseline was -6.0\% (95\% CI, -15.0 to 3.0; P =.1954). The adverse-event profile, including renal safety and change in eGFR, was similar between the linagliptin and placebo groups. Conclusions: In individuals at early stages of diabetic kidney disease, linagliptin significantly improved glycaemic control but did not significantly lower albuminuria. There was no significant change in placebo-adjusted eGFR. Detection of clinically relevant renal effects of linagliptin may require longer treatment, as its main experimental effects in animal studies have been to reduce interstitial fibrosis rather than alter glomerular haemodynamics.}, language = {en} }