@article{WeberFrankBommeletal.2012, author = {Weber, Cornelia and Frank, C. and Bommel, Sebastian and Rukat, Tammo and Leitenberger, Wolfram and Sch{\"a}fer, Peter and Schreiber, Frank and Kowarik, Stefan}, title = {Chain-length dependent growth dynamics of n-alkanes on silica investigated by energy-dispersive x-ray reflectivity in situ and in real-time}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {136}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {20}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4719530}, pages = {7}, year = {2012}, abstract = {We compare the growth dynamics of the three n-alkanes C36H74, C40H82, and C44H90 on SiO2 using real-time and in situ energy-dispersive x-ray reflectivity. All molecules investigated align in an upright-standing orientation on the substrate and exhibit a transition from layer-by-layer growth to island growth after about 4 monolayers under the conditions employed. Simultaneous fits of the reflected intensity at five distinct points in reciprocal space show that films formed by longer n-alkanes roughen faster during growth. This behavior can be explained by a chain-length dependent height of the Ehrlich-Schwoebel barrier. Further x-ray diffraction measurements after growth indicate that films consisting of longer n-alkanes also incorporate more lying-down molecules in the top region. While the results reveal behavior typical for chain-like molecules, the findings can also be useful for the optimization of organic field effect transistors where smooth interlayers of n-alkanes without coexistence of two or more molecular orientations are required.}, language = {en} }