@article{WaltherWesselMalbergetal.2006, author = {Walther, T and Wessel, Niels and Malberg, Hagen and Voss, Andreas and Stepan, H and Faber, R}, title = {A combined technique for predicting pre-eclampsia : concurrent measurement of uterine perfusion and analysis of heart rate and blood pressure variability}, year = {2006}, abstract = {Objective Pre-eclampsia is a serious complication of pregnancy with high morbidity and mortality and an incidence of 3-5\% in all pregnancies. Early prediction is still insufficient in clinical practice. Although most pre- eclamptic patients have pathological uterine perfusion in the second trimester, perfusion disturbance has a positive predictive accuracy (PPA) only of approximately 30\%. Methods Non-invasive continuous blood pressure recordings were taken simultaneously via a finger cuff for 30 min. Time series of systolic as well as diastolic beat-to-beat pressure values were extracted to analyse heart rate and blood pressure variability and baroreflex sensitivity in 102 second- trimester pregnancies, to assess predictability for pre-eclampsia (n = 16). All women underwent Doppler investigations of the uterine arteries. Results We identified a combination of three variability and baroreflex parameters to best predict pre-eclampsia several weeks before clinical manifestation. The discriminant function of these three parameters classified patients with later pre-eclampsia with a sensitivity of 87.5\%, a specificity of 83.7\%, and a PPA of 50.0\%. Combined with Doppler investigations of uterine arteries, PPA increased to 71.4\%. Conclusions This technique of incorporating one-stop clinical assessment of uterine perfusion and variability parameters in the second trimester produces the most effective prediction of pre-eclampsia to date}, language = {en} } @article{FaberBaumertStepanetal.2004, author = {Faber, R. and Baumert, M. and Stepan, H. and Wessel, Niels and Voss, Andreas and Walther, T.}, title = {Baroreflex sensitivity, heart rate, and blood pressure variability in hypertensive pregnancy disorders}, issn = {0950-9240}, year = {2004}, abstract = {Hypertensive pregnancy disorders are a leading cause of perinatal and maternal morbidity and mortality. Heart rate variability (HRV), blood pressure variability (BPV), and baroreflex sensitivity (BRS) are relevant predictors of cardiovascular risk in humans. The aim of the study was to evaluate whether HRV, BPV, and BRS differ between distinct hypertensive pregnancy disorders. Continuous heart rate and blood pressure recordings were performed in 80 healthy pregnant women as controls (CON), 19 with chronic hypertension (CH), 18 with pregnancy-induced hypertension (PIH), and 44 with pre-eclampsia (PE). The data were assessed by time and frequency domain analysis, nonlinear dynamics, and BRS. BPV is markedly altered in all three groups with hypertensive disorders compared to healthy pregnancies, whereby changes were most pronounced in PE patients. Interestingly, this increase in PE patients did not lead to elevated spontaneous baroreflex events, while BPV changes in both the other hypertensive groups were paralleled by alterations in baroreflex parameters. The HRV is unaltered in CH and PE but significantly impaired in PIH. We conclude that parameters of the HRV, BPV, and BRS differ between various hypertensive pregnancy disorders. Thus, distinct clinical manifestations of hypertension in pregnancy have different pathophysiological, regulatory, and compensatory mechanisms}, language = {en} } @misc{HardyTorresRendonLealEganaetal.2017, author = {Hardy, John G. and Torres-Rendon, Jose Guillermo and Leal-Ega{\~n}a, Aldo and Walther, Andreas and Schlaad, Helmut and C{\"o}lfen, Helmut and Scheibel, Thomas R.}, title = {Biomineralization of engineered spider silk protein-based composite materials for bone tissue engineering}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400519}, pages = {13}, year = {2017}, abstract = {Materials based on biodegradable polyesters, such as poly(butylene terephthalate) (PBT) or poly(butylene terephthalate-co-poly(alkylene glycol) terephthalate) (PBTAT), have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16)), that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.}, language = {en} } @article{HardyTorresRendonLealEganaetal.2016, author = {Hardy, John G. and Torres-Rendon, Jose Guillermo and Leal-Egana, Aldo and Walther, Andreas and Schlaad, Helmut and Coelfen, Helmut and Scheibel, Thomas R.}, title = {Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering}, series = {Materials}, volume = {9}, journal = {Materials}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma9070560}, pages = {93 -- 108}, year = {2016}, abstract = {Materials based on biodegradable polyesters, such as poly(butylene terephthalate) (PBT) or poly(butylene terephthalate-co-poly(alkylene glycol) terephthalate) (PBTAT), have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16)), that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.}, language = {en} } @article{HardyBertinTorresRendonetal.2018, author = {Hardy, John G. and Bertin, Annabelle and Torres-Rendon, Jose Guillermo and Leal-Egana, Aldo and Humenik, Martin and Bauer, Felix and Walther, Andreas and C{\"o}lfen, Helmut and Schlaad, Helmut and Scheibel, Thomas R.}, title = {Facile photochemical modification of silk protein-based biomaterials}, series = {Macromolecular bioscience}, volume = {18}, journal = {Macromolecular bioscience}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-5187}, doi = {10.1002/mabi.201800216}, pages = {6}, year = {2018}, abstract = {Silk protein-based materials show promise for application as biomaterials for tissue engineering. The simple and rapid photochemical modification of silk protein-based materials composed of either Bombyx mori silkworm silk or engineered spider silk proteins (eADF4(C16)) is reported. Radicals formed on the silk-based materials initiate the polymerization of monomers (acrylic acid, methacrylic acid, or allylamine) which functionalize the surface of the silk materials with poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), or poly(allylamine) (PAAm). To demonstrate potential applications of this type of modification, the polymer-modified silks are mineralized. The PAA- and PMAA-functionalized silks are mineralized with calcium carbonate, whereas the PAAm-functionalized silks are mineralized with silica, both of which provide a coating on the materials that may be useful for bone tissue engineering, which will be the subject of future investigations.}, language = {en} } @article{HoangGryzikHoppeetal.2022, author = {Hoang, Yen and Gryzik, Stefanie and Hoppe, Ines and Rybak, Alexander and Sch{\"a}dlich, Martin and Kadner, Isabelle and Walther, Dirk and Vera, Julio and Radbruch, Andreas and Groth, Detlef and Baumgart, Sabine and Baumgrass, Ria}, title = {PRI: Re-analysis of a public mass cytometry dataset reveals patterns of effective tumor treatments}, series = {Frontiers in immunology}, volume = {13}, journal = {Frontiers in immunology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.849329}, pages = {9}, year = {2022}, abstract = {Recently, mass cytometry has enabled quantification of up to 50 parameters for millions of cells per sample. It remains a challenge to analyze such high-dimensional data to exploit the richness of the inherent information, even though many valuable new analysis tools have already been developed. We propose a novel algorithm "pattern recognition of immune cells (PRI)" to tackle these high-dimensional protein combinations in the data. PRI is a tool for the analysis and visualization of cytometry data based on a three or more-parametric binning approach, feature engineering of bin properties of multivariate cell data, and a pseudo-multiparametric visualization. Using a publicly available mass cytometry dataset, we proved that reproducible feature engineering and intuitive understanding of the generated bin plots are helpful hallmarks for re-analysis with PRI. In the CD4(+)T cell population analyzed, PRI revealed two bin-plot patterns (CD90/CD44/CD86 and CD90/CD44/CD27) and 20 bin plot features for threshold-independent classification of mice concerning ineffective and effective tumor treatment. In addition, PRI mapped cell subsets regarding co-expression of the proliferation marker Ki67 with two major transcription factors and further delineated a specific Th1 cell subset. All these results demonstrate the added insights that can be obtained using the non-cluster-based tool PRI for re-analyses of high-dimensional cytometric data.}, language = {en} }