@article{BurattiThomasRoussosetal.2019, author = {Buratti, Bonnie J. and Thomas, P. C. and Roussos, E. and Howett, Carly and Seiss, Martin and Hendrix, A. R. and Helfenstein, Paul and Brown, R. H. and Clark, R. N. and Denk, Tilmann and Filacchione, Gianrico and Hoffmann, Holger and Jones, Geraint H. and Khawaja, N. and Kollmann, Peter and Krupp, Norbert and Lunine, Jonathan and Momary, T. W. and Paranicas, Christopher and Postberg, Frank and Sachse, Manuel and Spahn, Frank and Spencer, John and Srama, Ralf and Albin, T. and Baines, K. H. and Ciarniello, Mauro and Economou, Thanasis and Hsu, Hsiang-Wen and Kempf, Sascha and Krimigis, Stamatios M. and Mitchell, Donald and Moragas-Klostermeyer, Georg and Nicholson, Philip D. and Porco, C. C. and Rosenberg, Heike and Simolka, Jonas and Soderblom, Laurence A.}, title = {Close Cassini flybys of Saturn's ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus}, series = {Science}, volume = {364}, journal = {Science}, number = {6445}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aat2349}, pages = {1053}, year = {2019}, abstract = {Saturn's main ring system is associated with a set of small moons that either are embedded within it or interact with the rings to alter their shape and composition. Five close flybys of the moons Pan, Daphnis, Atlas, Pandora, and Epimetheus were performed between December 2016 and April 2017 during the ring-grazing orbits of the Cassini mission. Data on the moons' morphology, structure, particle environment, and composition were returned, along with images in the ultraviolet and thermal infrared. We find that the optical properties of the moons' surfaces are determined by two competing processes: contamination by a red material formed in Saturn's main ring system and accretion of bright icy particles or water vapor from volcanic plumes originating on the moon Enceladus.}, language = {en} } @article{DeinoDommainKelleretal.2019, author = {Deino, A. L. and Dommain, Ren{\´e} and Keller, C. B. and Potts, R. and Behrensmeyer, A. K. and Beverly, E. J. and King, J. and Heil, C. W. and Stockhecke, M. and Brown, E. T. and Moerman, J. and deMenocal, P. and Deocampo, D. and Garcin, Yannick and Levin, N. E. and Lupien, R. and Owen, R. B. and Rabideaux, N. and Russell, J. M. and Scott, J. and Riedl, S. and Brady, K. and Bright, J. and Clark, J. B. and Cohen, A. and Faith, J. T. and Noren, A. and Muiruri, V. and Renaut, R. and Rucina, S. and Uno, K.}, title = {Chronostratigraphic model of a high-resolution drill core record of the past million years from the Koora Basin, south Kenya Rift: Overcoming the difficulties of variable sedimentation rate and hiatuses}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {215}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, organization = {Olorgesailie Drilling Project Sci}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2019.05.009}, pages = {213 -- 231}, year = {2019}, abstract = {The Olorgesailie Drilling Project and the related Hominin Sites and Paleolakes Drilling Project in East Africa were initiated to test hypotheses and models linking environmental change to hominin evolution by drilling lake basin sediments adjacent to important archeological and paleoanthropological sites. Drill core OL012-1A recovered 139 m of sedimentary and volcaniclastic strata from the Koora paleolake basin, southern Kenya Rift, providing the opportunity to compare paleoenvironmental influences over the past million years with the parallel record exposed at the nearby Olorgesailie archeological site. To refine our ability to link core-to-outcrop paleoenvironmental records, we institute here a methodological framework for deriving a robust age model for the complex lithostratigraphy of OL012-1A. Firstly, chronostratigraphic control points for the core were established based on 4 Ar/39Ar ages from intercalated tephra deposits and a basal trachyte flow, as well as the stratigraphic position of the Brunhes-Matuyama geomagnetic reversal. This dataset was combined with the position and duration of paleosols, and analyzed using a new Bayesian algorithm for high-resolution age-depth modeling of hiatus-bearing stratigraphic sections. This model addresses three important aspects relevant to highly dynamic, nonlinear depositional environments: 1) correcting for variable rates of deposition, 2) accommodating hiatuses, and 3) quantifying realistic age uncertainty with centimetric resolution. Our method is applicable to typical depositional systems in extensional rifts as well as to drill cores from other dynamic terrestrial or aquatic environments. We use the core age model and lithostratigraphy to examine the inter connectivity of the Koora Basin to adjacent areas and sources of volcanism. (C) 2019 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SchellnhuberCrutzenClarketal.2005, author = {Schellnhuber, Hans Joachim and Crutzen, P. J. and Clark, W. C. and Hunt, J.}, title = {Earth system analysis for sustainability}, issn = {0013-9157}, year = {2005}, abstract = {Anthropogenic interference has resulted in climate change, ocean acidification, eutrophication and toxic pollution of the earth and it's ecosystems. The Earth System Analysis is an international research program on global environmental change to understand these processes in order to work towards global sustainability}, language = {en} } @article{CuzziBurnsCharnozetal.2010, author = {Cuzzi, Jeff N. and Burns, Joseph A. and Charnoz, S{\´e}bastien and Clark, Roger N. and Colwell, Josh E. and Dones, Luke and Esposito, Larry W. and Filacchione, Gianrico and French, Richard G. and Hedman, Matthew M. and Kempf, Sascha and Marouf, Essam A. and Murray, Carl D. and Nicholson, Phillip D. and Porco, Carolyn C. and Schmidt, J{\"u}rgen and Showalter, Mark R. and Spilker, Linda J. and Spitale, Joseph N. and Srama, Ralf and Sremcević, Miodrag and Tiscareno, Matthew Steven and Weiss, John}, title = {An evolving view of Saturn's dynamic rings}, issn = {0036-8075}, doi = {10.1126/science.1179118}, year = {2010}, abstract = {We review our understanding of Saturn's rings after nearly 6 years of observations by the Cassini spacecraft. Saturn's rings are composed mostly of water ice but also contain an undetermined reddish contaminant. The rings exhibit a range of structure across many spatial scales; some of this involves the interplay of the fluid nature and the self-gravity of innumerable orbiting centimeter- to meter-sized particles, and the effects of several peripheral and embedded moonlets, but much remains unexplained. A few aspects of ring structure change on time scales as short as days. It remains unclear whether the vigorous evolutionary processes to which the rings are subject imply a much younger age than that of the solar system. Processes on view at Saturn have parallels in circumstellar disks.}, language = {en} }