@article{LeonCardonaMejiaVelezetal.2019, author = {Le{\´o}n, Santiago and Cardona, Agust{\´i}n and Mejia Velez, Dany and Botello, G. E. and Villa, V{\´i}ctor and Collo, Gilda and Valencia, Victor A. and Zapata, Sebastian Henao and Avellaneda-Jimenez, D. S.}, title = {Source area evolution and thermal record of an Early Cretaceous back-arc basin along the northwesternmost Colombian Andes}, series = {Journal of South American earth sciences}, volume = {94}, journal = {Journal of South American earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {0895-9811}, doi = {10.1016/j.jsames.2019.102229}, pages = {16}, year = {2019}, abstract = {Identifying the provenance signature and geodynamic setting on which sedimentary basins at convergent margins grow is challenging since they result from coupled erosional and tectonic processes, which shape the evolution of source areas and the stress regime. The Early Cretaceous evolution of the northern Andes of Colombia is characterized by extensional tectonics and the subsequent formation of a marginal basin. The Abejorral Formation and coeval volcano-sedimentary rocks are exposed along the western flank and axis of the Central Cordillera. They comprise an Early Cretaceous transgressive sequence initially accumulated in fluvial deltaic environments, which switched towards a deep-marine setting, and are interpreted as the infilling record of a marginal back-arc basin. Available provenance data suggest that Permian-Triassic metamorphic and less abundant Jurassic magmatic rocks forming the basement of the Central Cordillera sourced the Abejorral Formation. New detailed volcanic and metamorphic lithics analyses, conventional and varietal study of heavy minerals, detrital rutile mineral chemistry, allowed us to document changes in the source areas defined by the progressive appearance of both higher-grade and more distal low-grade metamorphic sources, which switched from pelitic to dominantly mafic in composition. Crystallochemical indexes of clay minerals of fine-grained rocks of the Abejorral Formation suggest that samples located close to the Romeral Fault System show characteristics of low-medium P-T low-grade metamorphism, whereas rocks located farther to the northeast preserve primary diagenetic features, which suggest a high heat-flow accumulation setting. We interpret that the Abejorral Formation records the progressive unroofing of the Central Cordillera basement that was being rapidly exhumed, as well as the incorporation of distal subduction-related metamorphic complexes to the west in response either to the widening of extensional front or the reactivation of fault structures on the oceanward margin of the basin. Although the deformational record of the Abejorral Formation would have resulted from over-imposed episodes, our new geochronological constraints suggest that this sedimentary sequence must have been deformed before the Paleocene due to the presence of arc-related intrusive non-deformed magmatic rocks with a crystallization age of ca. 60 Ma.}, language = {en} } @article{DellaPortaVillaKenter2005, author = {Della Porta, G. and Villa, E. and Kenter, J. A. M.}, title = {Facies distribution of fusulinida in a Bashkirian-Moscovian (Pennsylvanian) carbonate platform top (Cantabrian Mountains, NW Spain)}, issn = {0096-1191}, year = {2005}, abstract = {The Sierra del Cuera (Cantabrian Mountains, Asturias, Spain) exhibits an exceptionally well-preserved upper Bashkirian-lower Moscovian succession of a high-relief carbonate platform with steep adjacent slope. During the late Bashkirian, the platform margin prograded rapidly basinward, and during the early Moscovian, platform aggradation increased. Fusulinida distributions have been estimated in three platform study windows representative of the Bashkirian and Moscovian lithofacies. Microbial boundstone accumulations at the platform margin and slope contain scarce fusulinoideans (particularly during the Moscovian aggradation, when water depth was relatively greater). Boundstones are characterized by tetrataxids, lasiodiscids, pseudoammodiscids, biseriamminids, endothyrids and palaeotextulariids. Grainstone units with sediments deposited above wave base are characterized by the predominance of Pseudoendothyra, Eostaffella (Bashkirian) or Profusulinella (Moscovian), Bradyina and palaeotextulariids. The open-marine facies, below effective wave-base but intermittently affected by storm currents, is enriched in endothyrids and palaeotextulariids in the Bashkirian part, and in Profusulinella, Eofusulina and Schubertella in the Moscovian part. The Moscovian facies, of lower energy and deeper water depth, contain some microbially precipitated micrite and have scarce Fusulinida, mostly represented by endothyrids, biseriamminids, and fusulinoideans (Eostaffella, Ozawainella and Profusulinella). Lagoonal open- to restricted-marine facies with beresellid algae contain Profusulinella, Schubertella and biseriamminids. Crinoidal packstones were deposited in moderate-energy settings close to the platform margin, below wave-base, and are characterized by Ozawainella, Eostaffella, palaeotextulariids and tetrataxids. These analyses show that fusulinid foraminifera inhabited mostly shallow and open-marine environments. Their distribution was controlled by depth-related variables, water energy and open-marine vs. restricted-marine conditions. Fusulinoideans increase in the Moscovian strata, and show different trends in the upper Bashkirian and lower Moscovian platforms, possibly because of: a) changes in the paleoecology of Fusulinida at the species level from the Bashkirian to the Moscovian; and/or b) variations in the depositional environments and physicochemical characteristics of seawater from the Bashkirian progradational phase to the Moscovian aggradational phase. Pseudoendothyra, Profusulinella, Schubertella, bradyinids and palacotextulariids showed an affinity for high-energy settings. Profusulinella and Schubertella, however, preferred the shallowest facies and also tolerated restricted marine conditions. Eostaffella's distribution largely differs between the Bashkirian and Moscovian parts because it characterizes the high-energy grainstones of the upper Bashkirian and the open-marine, moderate- to low-energy environments of the lower Moscovian. Endothyrids were excluded from lagoonal environments with restricted circulation and abnormal salinity. Biscriamminids preferred open-marine, moderate- to low-energy settings with muddy substrates, but were not li}, language = {en} }