@article{MuehlbauerStuerchlerGranacher2012, author = {M{\"u}hlbauer, Thomas and St{\"u}rchler, M. and Granacher, Urs}, title = {Effects of climbing on core strength and mobility in adults}, series = {International journal of sports medicine}, volume = {33}, journal = {International journal of sports medicine}, number = {6}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0031-1301312}, pages = {445 -- 451}, year = {2012}, abstract = {The objective of this study was to examine the impact of an indoor climbing training and detraining program on core/handgrip strength and trunk mobility in men and women. 28 young sedentary adults participated in this study and were assigned to an intervention (30+/-3 years) or a control (29+/-2 years) group. The intervention group participated in 8 weeks (2 times/week) of indoor climbing training, followed by 8 weeks of detraining. Tests included the measurement of maximal isometric strength (MIS) of the trunk flexors/extensors, the assessment of trunk mobility in the sagittal (SAP) and the coronal (CRP) plane as well as testing of handgrip strength. After training, significant improvements were observed in MIS of the trunk flexors/extensors (similar to 19-22 \%, all p<0.01), in trunk mobility in SAP/CRP (similar to 14-19 \%, all p<0.01), and in handgrip strength (similar to 5 \%, p<0.01). During detraining, MIS (similar to 12-13 \%, all p<0.01) and trunk mobility (similar to 7-10\%, all p<0.01) deteriorated significantly, whereas handgrip strength remained. This indoor climbing training program conducted in sedentary adults proved to be feasible (i.e., attendance rate of 89.4\%) and effective. It is suggested that indoor climbing should be permanently conducted to maintain the observed improvements in core muscle strength and trunk mobility.}, language = {en} } @article{MuehlbauerGollhoferGranacher2012, author = {M{\"u}hlbauer, Thomas and Gollhofer, Albert and Granacher, Urs}, title = {Sex-related effects in strength training during adolescence a pilot study}, series = {Perceptual \& motor skills}, volume = {115}, journal = {Perceptual \& motor skills}, number = {3}, publisher = {Sage Publ.}, address = {Missoula}, issn = {0031-5125}, doi = {10.2466/06.10.30.PMS.115.6.953-968}, pages = {953 -- 968}, year = {2012}, abstract = {The objective was to investigate the effects of high-velocity strength training on isometric strength of the leg extensors and jump height in female and male adolescents. Twenty-eight students (13 boys, 15 girls) ages 16 to 17 years participated in this study and were assigned to either a strength training group or a control group. Strength training was conducted over 8 weeks (2 times per week). Pre- and post-training tests included the measurements of maximal isometric force and rate of force development of the leg extensors as well as countermovement jump height. Both girls (effect size = 1.37) and boys (effect size = 0.61) showed significant improvements in jump height. However, significant increases in maximal isometric force (effect size = 1.85) and rate of force development (effect size = 2.23) were found only in girls. In female and male adolescents, high-velocity strength training is an effective training regimen that produced improvements in countermovement jump height in both sexes but higher gains in maximal isometric force and rate of force development in girls.}, language = {en} } @article{GranacherGruberFoerdereretal.2010, author = {Granacher, Urs and Gruber, Markus and Foerderer, Dominik and Strass, Dieter and Gollhofer, Albert}, title = {Effects of ankle fatigue on functional reflex activity during gait perturbations in young and elderly men}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2010.03.016}, year = {2010}, abstract = {There is growing evidence that aging and muscle fatigue result in impaired postural reflexes in humans. Therefore, the objective of this study was to examine the effects of ankle fatigue on functional reflex activity (ERA) during gait perturbations in young and elderly men. Twenty-eight young (27.0 +/- 3.1 years, n = 14) and old (67.2 +/- 3.7 years, n = 14) healthy active men participated in this study. Fatigue of the plantarflexors and dorsiflexors was induced by isokinetic contractions. Pre and post-fatigue, subjects were tested for their ability to compensate for decelerating gait perturbations while walking on a treadmill. Latency, ERA of lower extremity muscles and angular velocity of the ankle joint complex were analysed by means of surface electromyography and goniometry. After the fatigue protocol, no significant main and interaction effects were detected for the parameter latency in m. tibialis anterior (TA). For both groups, a significant pre to post-test decrease in ERA in TA (P<.001) was observed coming along with increases in antagonist coactivity (P=.013) and maximal angular velocity of the ankle joint (p=.007). However, no significant group x test interactions were found for the three parameters. Ankle fatigue has an impact on the ability to compensate for gait perturbations in young and elderly adults. However, no significant differences in all analysed parameters were detected between young and elderly subjects. These results may imply that age-related deteriorations in the postural control system do not specifically affect the ability to compensate for gait perturbations under fatigued condition.}, language = {en} } @article{GranacherGruberGollhofer2009, author = {Granacher, Urs and Gruber, Markus and Gollhofer, Albert}, title = {Resistance training and neuromuscular performance in seniors}, issn = {0172-4622}, doi = {10.1055/s-0029-1224178}, year = {2009}, abstract = {Age-related processes in the neuromuscular and the somatosensory system are responsible for decreases in maximal and explosive force production capacity and deficits in postural control. Thus, the objectives of this study were to investigate the effects of resistance training on strength performance and on postural control in seniors. Forty healthy seniors (67 +/- 1 yrs) participated in this study. Subjects were randomly assigned to a resistance training (n = 20) and a control group (n = 20). Resistance training for the lower extremities lasted for 13 weeks at 80\% of the one repetition maximum. Pre and post tests included the measurement of maximal isometric leg extension force with special emphasis on the early part of the force-time-curve and the assessment of static (functional reach test) and dynamic (tandem walk test, platform perturbation) postural control. Resistance training resulted I in an enhanced strength performance with increases I in explosive force exceeding those in maximal strength. Improved performances in the functional reach and in the tandem walk test were observed. Resistance training did not have an effect: on the compensation of platform perturbations. Increases in strength performance can primarily be explained by an improved neural drive of the agonist muscles. The inconsistent effect of resistance training on postural control may be explained by heterogeneity of testing methodology or by the incapability of isolated resisiance training to improve postural control.}, language = {en} }