@misc{ZouhalBenAbderrahmanDupontetal.2019, author = {Zouhal, Hassane and Ben Abderrahman, Abderraouf and Dupont, Gregory and Truptin, Pablo and Le Bris, R{\´e}gis and Le Postec, Erwan and Sghaeir, Zouita and Brughelli, Matt and Granacher, Urs and Bideau, Benoit}, title = {Effects of Neuromuscular Training on Agility Performance in Elite Soccer Players}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {575}, issn = {1866-8364}, doi = {10.25932/publishup-43735}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437358}, pages = {9}, year = {2019}, abstract = {Background: Agility in general and change-of-direction speed (CoD) in particular represent important performance determinants in elite soccer. Objectives: The objectives of this study were to determine the effects of a 6-week neuromuscular training program on agility performance, and to determine differences in movement times between the slower and faster turning directions in elite soccer players. Materials and Methods: Twenty male elite soccer players from the Stade Rennais Football Club (Ligue 1, France) participated in this study. The players were randomly assigned to a neuromuscular training group (NTG, n = 10) or an active control (CG, n = 10) according to their playing position. NTG participated in a 6-week, twice per week neuromuscular training program that included CoD, plyometric and dynamic stability exercises. Neuromuscular training replaced the regular warm-up program. Each training session lasted 30 min. CG continued their regular training program. Training volume was similar between groups. Before and after the intervention, the two groups performed a reactive agility test that included 180° left and right body rotations followed by a 5-m linear sprint. The weak side was defined as the left/right turning direction that produced slower overall movement times (MT). Reaction time (RT) was assessed and defined as the time from the first appearance of a visual stimulus until the athlete's first movement. MT corresponded to the time from the first movement until the athlete reached the arrival gate (5 m distance). Results: No significant between-group baseline differences were observed for RT or MT. Significant group x time interactions were found for MT (p = 0.012, effect size = 0.332, small) for the slower and faster directions (p = 0.011, effect size = 0.627, moderate). Significant pre-to post improvements in MT were observed for NTG but not CG (p = 0.011, effect size = 0.877, moderate). For NTG, post hoc analyses revealed significant MT improvements for the slower (p = 0.012, effect size = 0.897, moderate) and faster directions (p = 0.017, effect size = 0.968, moderate). Conclusion: Our results illustrate that 6 weeks of neuromuscular training with two sessions per week included in the warm-up program, significantly enhanced agility performance in elite soccer players. Moreover, improvements were found on both sides during body rotations. Thus, practitioners are advised to focus their training programs on both turning directions.}, language = {en} } @misc{GebelLuederGranacher2019, author = {Gebel, Arnd and L{\"u}der, Benjamin and Granacher, Urs}, title = {Effects of Increasing Balance Task Difficulty on Postural Sway and Muscle Activity in Healthy Adolescents}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {583}, issn = {1866-8364}, doi = {10.25932/publishup-43921}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439211}, pages = {15}, year = {2019}, abstract = {Evidence-based prescriptions for balance training in youth have recently been established. However, there is currently no standardized means available to assess and quantify balance task difficulty (BTD). Therefore, the objectives of this study were to examine the effects of graded BTD on postural sway, lower limb muscle activity and coactivation in adolescents. Thirteen healthy high-school students aged 16 to 17 volunteered to participate in this cross-sectional study. Testing involved participants to stand on a commercially available balance board with an adjustable pivot that allowed six levels of increasing task difficulty. Postural sway [i.e., total center of pressure (CoP) displacements] and lower limb muscle activity were recorded simultaneously during each trial. Surface electromyography (EMG) was applied in muscles encompassing the ankle (m. tibialis anterior, medial gastrocnemius, peroneus longus) and knee joint (m. vastus medialis, biceps femoris). The coactivation index (CAI) was calculated for ankle and thigh muscles. Repeated measures analyses of variance revealed a significant main effect of BTD with increasing task difficulty for postural sway (p < 0.001; d = 6.36), muscle activity (p < 0.001; 2.19 < d < 4.88), and CAI (p < 0.001; 1.32 < d < 1.41). Multiple regression analyses showed that m. tibialis anterior activity best explained overall CoP displacements with 32.5\% explained variance (p < 0.001). The observed increases in postural sway, lower limb muscle activity, and coactivation indicate increasing postural demands while standing on the balance board. Thus, the examined board can be implemented in balance training to progressively increase BTD in healthy adolescents.}, language = {en} } @misc{ChaabeneBehmNegraetal.2019, author = {Chaabene, Helmi and Behm, David George and Negra, Yassine and Granacher, Urs}, title = {Acute Effects of Static Stretching on Muscle Strength and Power}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {585}, issn = {1866-8364}, doi = {10.25932/publishup-44003}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-440036}, pages = {8}, year = {2019}, abstract = {The effects of static stretching (StS) on subsequent strength and power activities has been one of the most debated topics in sport science literature over the past decades. The aim of this review is (1) to summarize previous and current findings on the acute effects of StS on muscle strength and power performances; (2) to update readers' knowledge related to previous caveats; and (3) to discuss the underlying physiological mechanisms of short-duration StS when performed as single-mode treatment or when integrated into a full warm-up routine. Over the last two decades, StS has been considered harmful to subsequent strength and power performances. Accordingly, it has been recommended not to apply StS before strength- and power-related activities. More recent evidence suggests that when performed as a single-mode treatment or when integrated within a full warm-up routine including aerobic activity, dynamic-stretching, and sport-specific activities, short-duration StS (≤60 s per muscle group) trivially impairs subsequent strength and power activities (∆1-2\%). Yet, longer StS durations (>60 s per muscle group) appear to induce substantial and practically relevant declines in strength and power performances (∆4.0-7.5\%). Moreover, recent evidence suggests that when included in a full warm-up routine, short-duration StS may even contribute to lower the risk of sustaining musculotendinous injuries especially with high-intensity activities (e.g., sprint running and change of direction speed). It seems that during short-duration StS, neuromuscular activation and musculotendinous stiffness appear not to be affected compared with long-duration StS. Among other factors, this could be due to an elevated muscle temperature induced by a dynamic warm-up program. More specifically, elevated muscle temperature leads to increased muscle fiber conduction-velocity and improved binding of contractile proteins (actin, myosin). Therefore, our previous understanding of harmful StS effects on subsequent strength and power activities has to be updated. In fact, short-duration StS should be included as an important warm-up component before the uptake of recreational sports activities due to its potential positive effect on flexibility and musculotendinous injury prevention. However, in high-performance athletes, short-duration StS has to be applied with caution due to its negligible but still prevalent negative effects on subsequent strength and power performances, which could have an impact on performance during competition.}, language = {en} } @article{MadadiShadJafarnezhadgeroZagoetal.2019, author = {Madadi-Shad, Morteza and Jafarnezhadgero, Amir Ali and Zago, Matteo and Granacher, Urs}, title = {Effects of varus knee alignment on gait biomechanics and lower limb muscle activity in boys}, series = {Gait \& posture}, volume = {72}, journal = {Gait \& posture}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2019.05.030}, pages = {69 -- 75}, year = {2019}, abstract = {Background: There is evidence that frontal plane lower limb malalignment (e.g., genu varus) is a risk factor for knee osteoarthritis development. However, only scarce information is available on gait biomechanics and muscle activity in boys with genu varus. Research question: To examine the effects of knee varus alignment on lower limb kinematics, kinetics and muscular activity during walking at self-selected speed in boys with genu varus versus healthy age-matched controls. Methods: Thirty-six boys were enrolled in this study and divided into a group of boys with genu varus (n = 18; age: 11.66 +/- 1.64 years) and healthy controls (n = 18; age: 11.44 +/- 1.78 years). Three-dimensional kinematics, ground reaction forces, loading rates, impulses and free moments of both limbs were recorded during five walking trials at self-selected speed. Surface electromyography was recorded for rectus femoris and vastus lateralis/medialis muscles. Results: No significant between-group differences were found for gait speed. Participants in the genu varus group versus controls showed larger peak knee flexion (p = 0.030; d = 0.77), peak knee adduction (p < 0.001; d = 1.63), and peak ankle eversion angles (p < 0.001; d = 2.06). Significantly higher peak ground reaction forces were found at heel contact (vertical [p = 0.002; d = 1.16] and posterior [p < 0.001; d = 1.63] components) and at push off (vertical [p = 0.010; d = 0.93] and anterior [p < 0.001; d = 1.34] components) for genu varus versus controls. Peak medial ground reaction force (p = 0.032; d = 0.76), vertical loading rate (p < 0.001; d = 1.52), anterior-posterior impulse (p = 0.011; d = 0.92), and peak negative free moment (p = 0.030; d = 0.77) were significantly higher in genu varus. Finally, time to reach peak forces was significantly shorter in genu varus boys compared with healthy controls (p < 0.01; d = 0.73-1.60). The genu varus group showed higher activities in vastus lateralis (p < 0.001; d = 1.82) and vastus medialis (p = 0.013; d = 0.90) during the loading phase of walking. Significance: Our study revealed genu varus specific gait characteristics and muscle activities. Greater knee adduction angle in genu varus boys may increase the load on the medial compartment of the knee joint. The observed characteristics in lower limb biomechanics and muscle activity could play a role in the early development of knee osteoarthritis in genu varus boys.}, language = {en} } @article{JafarnezhadgeroAlaviMehrGranacher2019, author = {Jafarnezhadgero, Amir Ali and Alavi-Mehr, Seyed Majid and Granacher, Urs}, title = {Effects of anti-pronation shoes on lower limb kinematics and kinetics in female runners with pronated feet}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {5}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0216818}, pages = {14}, year = {2019}, abstract = {Physical fatigue and pronated feet constitute two risk factors for running-related lower limb injuries. Accordingly, different running shoe companies designed anti-pronation shoes with medial support to limit over pronation in runners. However, there is little evidence on the effectiveness and clinical relevance of anti-pronation shoes. This study examined lower limb kinematics and kinetics in young female runners with pronated feet during running with antipronation versus regular (neutral) running shoes in unfatigued and fatigued condition. Twenty-six female runners aged 24.1±5.6 years with pronated feet volunteered to participate in this study. Kinetic (3D Kistler force plate) and kinematic analyses (Vicon motion analysis system) were conducted to record participants' ground reaction forces and joint kinematics when running with anti-pronation compared with neutral running shoes. Physical fatigue was induced through an individualized submaximal running protocol on a motorized treadmill using rate of perceived exertion and heart rate monitoring. The statistical analyses indicated significant main effects of "footwear" for peak ankle inversion, peak ankle eversion, and peak hip internal rotation angles (p<0.03; d = 0.46-0.95). Pair-wise comparisons revealed a significantly greater peak ankle inversion angle (p<0.03; d = 0.95; 2.70°) and smaller peak eversion angle (p<0.03; d = 0.46; 2.53°) when running with anti-pronation shoes compared with neutral shoes. For kinetic data, significant main effects of "footwear" were found for peak ankle dorsiflexor moment, peak knee extensor moment, peak hip flexor moment, peak hip extensor moment, peak hip abductor moment, and peak hip internal rotator moment (p<0.02; d = 1.00-1.79). For peak positive hip power in sagittal and frontal planes and peak negative hip power in horizontal plane, we observed significant main effects of "footwear" (p<0.03; d = 0.92-1.06). Pairwise comparisons revealed that peak positive hip power in sagittal plane (p<0.03; d = 0.98; 2.39 w/kg), peak positive hip power in frontal plane (p = 0.014; d = 1.06; 0.54 w/kg), and peak negative hip power in horizontal plane (p<0.03; d = 0.92; 0.43 w/kg) were greater with anti-pronation shoes. Furthermore, the statistical analyses indicated significant main effects of "Fatigue" for peak ankle inversion, peak ankle eversion, and peak knee external rotation angles. Pair-wise comparisons revealed a fatigue-induced decrease in peak ankle inversion angle (p<0.01; d = 1.23; 2.69°) and a fatigue-induced increase in peak knee external rotation angle (p<0.05; d = 0.83; 5.40°). In addition, a fatigue-related increase was found for peak ankle eversion (p<0.01; d = 1.24; 2.67°). For kinetic data, we observed a significant main effect of "Fatigue" for knee flexor moment, knee internal rotator moment, and hip extensor moment (p<0.05; d = 0.83-1.01). The statistical analyses indicated significant a main effect of "Fatigue" for peak negative ankle power in sagittal plane (p<0.01; d = 1.25). Finally, we could not detect any significant footwear by fatigue interaction effects for all measures of joint kinetics and kinematics. Running in anti-pronation compared with neutral running shoes produced lower peak moments and powers in lower limb joints and better control in rear foot eversion. Physical fatigue increased peak moments and powers in lower limb joints irrespective of the type of footwear.}, language = {en} } @article{SammoudNegraChaabeneetal.2019, author = {Sammoud, Senda and Negra, Yassine and Chaabene, Helmi and Bouguezzi, Raja and Moran, Jason and Granacher, Urs}, title = {The Effects of Plyometric Jump Training on Jumping and Swimming Performances in Prepubertal Male Swimmers}, series = {Journal of sports science \& medicine}, volume = {18}, journal = {Journal of sports science \& medicine}, number = {4}, publisher = {Department of Sports Medicine, Medical Faculty of Uludag University}, address = {Bursa}, issn = {1303-2968}, pages = {805 -- 811}, year = {2019}, abstract = {Swimming performance can be improved not only by in-water sport-specific training but also by means of dry land-training (e.g., plyometric jump training [PJT]). This study examined the effects of an 8-week PJT on proxies of muscle power and swimming performance in prepubertal male swimmers. Participants were randomly allocated to a PJT group (PJT; n = 14; age: 10.3 +/- 0.4 years, maturity-offset = -3 +/- 0.3) or a control group (CG; n = 12; age: 10.5 +/- 0.4 years, maturity-offset = -2.8 +/- 0.3). Swimmers in PJT and CG performed 6 training sessions per week. Each training session lasted between 80 and 90 minutes. Over the 8 weeks in-season training period, PJT performed two PJT sessions per week, each lasting between 25 to 30 minutes (similar to 1 hour per week) in replacement of sport-specific swimming drills. During that time, CG followed their regular sport-specific swimming training (e.g., coordination, breathing, improving swimming strokes). Overall training volume was similar between groups. Pre- and post-training, tests were conducted to assess proxies of muscle power (countermovement-jump [CMJ]), standing-long-jump [SLJ]) and sport-specific swimming performances (15-, 25-, and 50-m front-crawl, 25-m kick without push [25-m kick WP], and 25-m front-crawl WP). No training or test-related injuries were detected over the course of the study. Between-group analyses derived from magnitude-based inferences showed trivial-to-large effects in favour of PJT for all tests (ES = 0.28 to 1.43). Within-group analyses for the PJT showed small performance improvements for CMJ (effect-size [ES] = 0.53), 25-m kick WP (ES = 0.25), and 50-m front crawl (ES = 0.56) tests. Moderate performance improvements were observed for the SLJ, 25-m front-crawl WP, 15-m and 25-m front-crawl tests (ES = 0.95, 0.60, 0.99, and 0.85, respectively). For CG, the within-group results showed trivial performance declines for the CMJ (ES=-0.13) and the 50-m front-crawl test (ES = -0.04). In addition, trivial-to-small performance improvements were observed for the SLJ (ES = 0.09), 25-m kick WP (ES = 0.02), 25-m front-crawl WP (ES = 0.19), 25-m front-crawl (ES = 0.2), (SLJ [ES = 0.09, and 15-m front crawl (ES = 0.36). Short-term in-season PJT, integrated into the regular swimming training, was more effective than regular swimming training alone in improving jump and sport-specific swimming performances in prepubertal male swimmers.}, language = {en} } @article{ZinkeWarnkeGaebleretal.2019, author = {Zinke, Fridolin and Warnke, Torsten and G{\"a}bler, Martijn and Granacher, Urs}, title = {Effects of Isokinetic Training on Trunk Muscle Fitness and Body Composition in World-Class Canoe Sprinters}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.00021}, pages = {10}, year = {2019}, abstract = {In canoe sprint, the trunk muscles play an important role in stabilizing the body in an unstable environment (boat) and in generating forces that are transmitted through the shoulders and arms to the paddle for propulsion of the boat. Isokinetic training is well suited for sports in which propulsion is generated through water resistance due to similarities in the resistive mode. Thus, the purpose of this study was to determine the effects of isokinetic training in addition to regular sport-specific training on trunk muscular fitness and body composition in world-class canoeists and to evaluate associations between trunk muscular fitness and canoe-specific performance. Nine world-class canoeists (age: 25.6 ± 3.3 years; three females; four world champions; three Olympic gold medalists) participated in an 8-week progressive isokinetic training with a 6-week block "muscle hypertrophy" and a 2-week block "muscle power." Pre- and post-tests included the assessment of peak isokinetic torque at different velocities in concentric (30 and 140∘s-1) and eccentric (30 and 90∘s-1) mode, trunk muscle endurance, and body composition (e.g., body fat, segmental lean mass). Additionally, peak paddle force was assessed in the flume at a water current of 3.4 m/s. Significant pre-to-post increases were found for peak torque of the trunk rotators at 30∘s-1 (p = 0.047; d = 0.4) and 140∘s-1 (p = 0.014; d = 0.7) in concentric mode. No significant pre-to-post changes were detected for eccentric trunk rotator torque, trunk muscle endurance, and body composition (p > 0.148). Significant medium-to-large correlations were observed between concentric trunk rotator torque but not trunk muscle endurance and peak paddle force, irrespective of the isokinetic movement velocity (all r ≥ 0.886; p ≤ 0.008). Isokinetic trunk rotator training is effective in improving concentric trunk rotator strength in world-class canoe sprinters. It is recommended to progressively increase angular velocity from 30∘s-1 to 140∘s-1 over the course of the training period.}, language = {en} } @article{PrieskeChaabenePutaetal.2019, author = {Prieske, Olaf and Chaabene, Helmi and Puta, Christian and Behm, David George and B{\"u}sch, Dirk and Granacher, Urs}, title = {Effects of Drop Height on Jump Performance in Male and Female Elite Adolescent Handball Players}, series = {International journal of sports physiology and performance}, volume = {14}, journal = {International journal of sports physiology and performance}, number = {5}, publisher = {Human Kinetics Publ.}, address = {Champaign}, issn = {1555-0265}, doi = {10.1123/ijspp.2018-0482}, pages = {674 -- 680}, year = {2019}, abstract = {Purpose: To examine the effects of drop height on drop-jump (DJ) performance and on associations between DJ and horizontal-jump/sprint performances in adolescent athletes. Methods: Male (n = 119, 2.5 [0.6] y post-peak-height velocity) and female (n = 120, 2.5 [0.5] y post-peak-height velocity) adolescent handball players (national level) performed DJs in randomized order using 3 drop heights (20, 35, and 50 cm). DJ performance (jump height, reactive strength index [RSI]) was analyzed using the Optojump Next system. In addition, correlations were computed between DJ height and RSI with standing-long-jump and 20-m linear-sprint performances. Results: Statistical analyses revealed medium-size main effects of drop height for DJ height and RSI (P <.001, 0.63 <= d <= 0.71). Post hoc tests indicated larger DJ heights from 20 to 35 and 35 to 50 cm (P <=.031, 0.33 <= d <= 0.71) and better RSI from 20- to 35-cm drop height (P <.001, d = 0.77). No significant difference was found for RSI between 35- and 50-cm drop height. Irrespective of drop height, associations of DJ height and RSI were small with 5-m-split time (-.27 <= r <=.05), medium with 10-m-split time (-.44 <= r <=.14), and medium to large with 20-m sprint time and standing-long-jump distance (-.57 <= r <=.22). Conclusions: The present findings indicate that, irrespective of sex, 35-cm drop heights are best suited to induce rapid and powerful DJ performance (ie, RSI) during reactive strength training in elite adolescent handball players. Moreover, training-related gains in DJ performance may at least partly translate to gains in horizontal jump and longer sprint distances (ie, >= 20-m) and/or vice versa in male and female elite adolescent athletes, irrespective of drop height.}, language = {en} } @misc{SaidiZouhalRhibietal.2019, author = {Saidi, Karim and Zouhal, Hassane and Rhibi, Fatma and Tijani, Jed M. and Boullosa, Daniel and Chebbi, Amel and Hackney, Anthony C. and Granacher, Urs and Bideau, Benoit and Ben Abderrahman, Abderraouf}, title = {Effects of a six-week period of congested match play on plasma volume variations, hematological parameters, training workload and physical fitness in elite soccer players}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {572}, issn = {1866-8364}, doi = {10.25932/publishup-43716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437166}, pages = {17}, year = {2019}, abstract = {Objectives The aims of this study were to investigate the effects of a six-week in-season period of soccer training and games (congested period) on plasma volume variations (PV), hematological parameters, and physical fitness in elite players. In addition, we analyzed relationships between training load, hematological parameters and players' physical fitness. Methods Eighteen elite players were evaluated before (T1) and after (T2) a six-week in-season period interspersed with 10 soccer matches. At T1 and T2, players performed the Yo-Yo intermittent recovery test level 1 (YYIR1), the repeated shuttle sprint ability test (RSSA), the countermovement jump test (CMJ), and the squat jump test (SJ). In addition, PV and hematological parameters (erythrocytes [M/mm3], hematocrit [\%], hemoglobin [g/dl], mean corpuscular volume [fl], mean corpuscular hemoglobin content [pg], and mean hemoglobin concentration [\%]) were assessed. Daily ratings of perceived exertion (RPE) were monitored in order to quantify the internal training load. Results From T1 to T2, significant performance declines were found for the YYIR1 (p<0.001, effect size [ES] = 0.5), RSSA (p<0.01, ES = 0.6) and SJ tests (p< 0.046, ES = 0.7). However, no significant changes were found for the CMJ (p = 0.86, ES = 0.1). Post-exercise, RSSA blood lactate (p<0.012, ES = 0.2) and PV (p<0.01, ES = 0.7) increased significantly from T1 to T2. A significant decrease was found from T1 to T2 for the erythrocyte value (p<0.002, ES = 0.5) and the hemoglobin concentration (p<0.018, ES = 0.8). The hematocrit percentage rate was also significantly lower (p<0.001, ES = 0.6) at T2. The mean corpuscular volume, mean corpuscular hemoglobin content and the mean hemoglobin content values were not statistically different from T1 to T2. No significant relationships were detected between training load parameters and percentage changes of hematological parameters. However, a significant relationship was observed between training load and changes in RSSA performance (r = -0.60; p<0.003). Conclusions An intensive period of "congested match play" over 6 weeks significantly compromised players' physical fitness. These changes were not related to hematological parameters, even though significant alterations were detected for selected measures.}, language = {en} } @article{SaidiZouhalRhibietal.2019, author = {Saidi, Karim and Zouhal, Hassane and Rhibi, Fatma and Tijani, Jed M. and Boullosa, Daniel and Chebbi, Amel and Hackney, Anthony C. and Granacher, Urs and Bideau, Benoit and Ben Abderrahman, Abderraouf}, title = {Effects of a six-week period of congested match play on plasma volume variations, hematological parameters, training workload and physical fitness in elite soccer players}, series = {PLOS ONE}, volume = {14}, journal = {PLOS ONE}, number = {7}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0219692}, pages = {17}, year = {2019}, abstract = {Objectives The aims of this study were to investigate the effects of a six-week in-season period of soccer training and games (congested period) on plasma volume variations (PV), hematological parameters, and physical fitness in elite players. In addition, we analyzed relationships between training load, hematological parameters and players' physical fitness. Methods Eighteen elite players were evaluated before (T1) and after (T2) a six-week in-season period interspersed with 10 soccer matches. At T1 and T2, players performed the Yo-Yo intermittent recovery test level 1 (YYIR1), the repeated shuttle sprint ability test (RSSA), the countermovement jump test (CMJ), and the squat jump test (SJ). In addition, PV and hematological parameters (erythrocytes [M/mm3], hematocrit [\%], hemoglobin [g/dl], mean corpuscular volume [fl], mean corpuscular hemoglobin content [pg], and mean hemoglobin concentration [\%]) were assessed. Daily ratings of perceived exertion (RPE) were monitored in order to quantify the internal training load. Results From T1 to T2, significant performance declines were found for the YYIR1 (p<0.001, effect size [ES] = 0.5), RSSA (p<0.01, ES = 0.6) and SJ tests (p< 0.046, ES = 0.7). However, no significant changes were found for the CMJ (p = 0.86, ES = 0.1). Post-exercise, RSSA blood lactate (p<0.012, ES = 0.2) and PV (p<0.01, ES = 0.7) increased significantly from T1 to T2. A significant decrease was found from T1 to T2 for the erythrocyte value (p<0.002, ES = 0.5) and the hemoglobin concentration (p<0.018, ES = 0.8). The hematocrit percentage rate was also significantly lower (p<0.001, ES = 0.6) at T2. The mean corpuscular volume, mean corpuscular hemoglobin content and the mean hemoglobin content values were not statistically different from T1 to T2. No significant relationships were detected between training load parameters and percentage changes of hematological parameters. However, a significant relationship was observed between training load and changes in RSSA performance (r = -0.60; p<0.003). Conclusions An intensive period of "congested match play" over 6 weeks significantly compromised players' physical fitness. These changes were not related to hematological parameters, even though significant alterations were detected for selected measures.}, language = {en} }