@article{GebelLehmannGranacher2020, author = {Gebel, Arnd and Lehmann, Tim and Granacher, Urs}, title = {Balance task difficulty affects postural sway and cortical activity in healthy adolescents}, series = {Experimental brain research}, volume = {238}, journal = {Experimental brain research}, number = {5}, publisher = {Springer}, address = {New York}, issn = {0014-4819}, doi = {10.1007/s00221-020-05810-1}, pages = {1323 -- 1333}, year = {2020}, abstract = {Electroencephalographic (EEG) research indicates changes in adults' low frequency bands of frontoparietal brain areas executing different balance tasks with increasing postural demands. However, this issue is unsolved for adolescents when performing the same balance task with increasing difficulty. Therefore, we examined the effects of a progressively increasing balance task difficulty on balance performance and brain activity in adolescents. Thirteen healthy adolescents aged 16-17 year performed tests in bipedal upright stance on a balance board with six progressively increasing levels of task difficulty. Postural sway and cortical activity were recorded simultaneously using a pressure sensitive measuring system and EEG. The power spectrum was analyzed for theta (4-7 Hz) and alpha-2 (10-12 Hz) frequency bands in pre-defined frontal, central, and parietal clusters of electrocortical sources. Repeated measures analysis of variance (rmANOVA) showed a significant main effect of task difficulty for postural sway (p < 0.001; d = 6.36). Concomitantly, the power spectrum changed in frontal, bilateral central, and bilateral parietal clusters. RmANOVAs revealed significant main effects of task difficulty for theta band power in the frontal (p < 0.001, d = 1.80) and both central clusters (left: p < 0.001, d = 1.49; right: p < 0.001, d = 1.42) as well as for alpha-2 band power in both parietal clusters (left: p < 0.001, d = 1.39; right: p < 0.001, d = 1.05) and in the central right cluster (p = 0.005, d = 0.92). Increases in theta band power (frontal, central) and decreases in alpha-2 power (central, parietal) with increasing balance task difficulty may reflect increased attentional processes and/or error monitoring as well as increased sensory information processing due to increasing postural demands. In general, our findings are mostly in agreement with studies conducted in adults. Similar to adult studies, our data with adolescents indicated the involvement of frontoparietal brain areas in the regulation of postural control. In addition, we detected that activity of selected brain areas (e.g., bilateral central) changed with increasing postural demands.}, language = {en} } @article{NegraChaabeneSammoudetal.2020, author = {Negra, Yassine and Chaabene, Helmi and Sammoud, Senda and Prieske, Olaf and Moran, Jason and Ramirez-Campillo, Rodrigo and Nejmaoui, Ali and Granacher, Urs}, title = {The increased effectiveness of loaded versus unloaded plyometric jump training in improving muscle power, speed, change of direction, and kicking-distance performance in prepubertal male soccer players}, series = {International journal of sports physiology and performance : IJSSP}, volume = {15}, journal = {International journal of sports physiology and performance : IJSSP}, number = {2}, publisher = {Human Kinetics}, address = {Champaign, Ill.}, issn = {1555-0265}, doi = {10.1123/ijspp.2018-0866}, pages = {189 -- 195}, year = {2020}, abstract = {Purpose: To examine the effects of loaded (LPJT) versus unloaded plyometric jump training (UPJT) programs on measures of muscle power, speed, change of direction (CoD), and kicking-distance performance in prepubertal male soccer players. Methods: Participants (N = 29) were randomly assigned to a LPJT group (n = 13; age = 13.0 [0.7] y) using weighted vests or UPJT group (n = 16; age = 13.0 [0.5] y) using body mass only. Before and after the intervention, tests for the assessment of proxies of muscle power (ie, countermovement jump, standing long jump); speed (ie, 5-, 10-, and 20-m sprint); CoD (ie, Illinois CoD test, modified 505 agility test); and kicking-distance were conducted. Data were analyzed using magnitude-based inferences. Results: Within-group analyses for the LPJT group showed large and very large improvements for 10-m sprint time (effect size [ES] = 2.00) and modified 505 CoD (ES = 2.83) tests, respectively. For the same group, moderate improvements were observed for the Illinois CoD test (ES = 0.61), 5- and 20-m sprint time test (ES = 1.00 for both the tests), countermovement jump test (ES = 1.00), and the maximal kicking-distance test (ES = 0.90). Small enhancements in the standing long jump test (ES = 0.50) were apparent. Regarding the UPJT group, small improvements were observed for all tests (ES = 0.33-0.57), except 5- and 10-m sprint time (ES = 1.00 and 0.63, respectively). Between-group analyses favored the LPJT group for the modified 505 CoD (ES = 0.61), standing long jump (ES = 0.50), and maximal kicking-distance tests (ES = 0.57), but not for the 5-m sprint time test (ES = 1.00). Only trivial between-group differences were shown for the remaining tests (ES = 0.00-0.09). Conclusion: Overall, LPJT appears to be more effective than UPJT in improving measures of muscle power, speed, CoD, and kicking-distance performance in prepubertal male soccer players.}, language = {en} } @article{SandauGranacher2020, author = {Sandau, Ingo and Granacher, Urs}, title = {Effects of the barbell load on the acceleration phase during the snatch in elite Olympic weightlifting}, series = {Sports}, volume = {8}, journal = {Sports}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2075-4663}, doi = {10.3390/sports8050059}, pages = {10}, year = {2020}, abstract = {The load-depended loss of vertical barbell velocity at the end of the acceleration phase limits the maximum weight that can be lifted. Thus, the purpose of this study was to analyze how increased barbell loads affect the vertical barbell velocity in the sub-phases of the acceleration phase during the snatch. It was hypothesized that the load-dependent velocity loss at the end of the acceleration phase is primarily associated with a velocity loss during the 1st pull. For this purpose, 14 male elite weightlifters lifted seven load-stages from 70-100\% of their personal best in the snatch. The load-velocity relationship was calculated using linear regression analysis to determine the velocity loss at 1st pull, transition, and 2nd pull. A group mean data contrast analysis revealed the highest load-dependent velocity loss for the 1st pull (t = 1.85, p = 0.044, g = 0.49 [-0.05, 1.04]) which confirmed our study hypothesis. In contrast to the group mean data, the individual athlete showed a unique response to increased loads during the acceleration sub-phases of the snatch. With the proposed method, individualized training recommendations on exercise selection and loading schemes can be derived to specifically improve the sub-phases of the snatch acceleration phase. Furthermore, the results highlight the importance of single-subject assessment when working with elite athletes in Olympic weightlifting.}, language = {en} } @article{SaidiBenAbderrahmanBoullosaetal.2020, author = {Saidi, Karim and Ben Abderrahman, Abderraouf and Boullosa, Daniel and Dupont, Gr{\´e}gory and Hackney, Anthony C. and Bideau, Benoit and Pavillon, Thomas and Granacher, Urs and Zouhal, Hassane}, title = {The Interplay Between Plasma Hormonal Concentrations, Physical Fitness, Workload and Mood State Changes to Periods of Congested Match Play in Professional Soccer Players}, series = {Frontiers in Physiology}, volume = {11}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2020.00835}, pages = {14}, year = {2020}, abstract = {Background: The regular assessment of hormonal and mood state parameters in professional soccer are proposed as good indicators during periods of intense training and/or competition to avoid overtraining. Objective: The aim of this study was to analyze hormonal, psychological, workload and physical fitness parameters in elite soccer players in relation to changes in training and match exposure during a congested period of match play. Methods: Sixteen elite soccer players from a team playing in the first Tunisian soccer league were evaluated three times (T1, T2, and T3) over 12 weeks. The non-congested period of match play was from T1 to T2, when the players played 6 games over 6 weeks. The congested period was from T2 to T3, when the players played 10 games over 6 weeks. From T1 to T3, players performed the Yo-Yo intermittent recovery test level 1 (YYIR1), the repeated shuttle sprint ability test (RSSA), the countermovement jump test (CMJ), and the squat jump test (SJ). Plasma Cortisol (C), Testosterone (T), and the T/C ratio were analyzed at T1, T2, and T3. Players had their mood dimensions (tension, depression, anger, vigor, fatigue, confusion, and a Total Mood Disturbance) assessed through the Profile of Mood State questionnaire (POMS). Training session rating of perceived exertion (sRPE) was also recorded on a daily basis in order to quantify internal training load and elements of monotony and strain. Results: Significant performance declines (T1 < T2 < T3) were found for SJ performance (p = 0.04, effect size [ES] ES₁₋₂ = 0.15-0.06, ES₂₋₃ = 0.24) from T1 to T3. YYIR1 performance improved significantly from T1 to T2 and declined significantly from T2 to T3 (p = 0.001, ES₁₋₂ = 0.24, ES₂₋₃ = -2.54). Mean RSSA performance was significantly higher (p = 0.019, ES₁₋₂ = -0.47, ES₂₋₃ = 1.15) in T3 compared with T2 and T1. Best RSSA performance was significantly higher in T3 when compared with T2 and T1 (p = 0.006, ES₂₋₃ = 0.47, ES₁₋₂ = -0.56), but significantly lower in T2 when compared with to T1. T and T/C were significantly lower in T3 when compared with T2 and T1 (T: p = 0.03, ES₃₋₂ = -0.51, ES₃₋₁ = -0.51, T/C: p = 0.017, ES₃₋₂ = -1.1, ES₃₋₁ = -1.07). Significant decreases were found for the vigor scores in T3 when compared to T2 and T1 (p = 0.002, ES₁₋₂ = 0.31, ES₃₋₂ = -1.25). A significant increase was found in fatigue scores in T3 as compared to T1 and T2 (p = 0.002, ES₁₋₂ = 0.43, ES₂₋₃ = 0.81). A significant increase was found from T1 < T2 < T3 intension score (p = 0.002, ES₁₋₂ = 1.1, ES₂₋₃ = 0.2) and anger score (p = 0.03, ES₁₋₂ = 0.47, ES₂₋₃ = 0.33) over the study period. Total mood disturbance increased significantly (p = 0.02, ES₁₋₂ = 0.91, ES₂₋₃ = 1.1) from T1 to T3. Between T1-T2, significant relationships were observed between workload and changes in T (r = 0.66, p = 0.003), and T/C ratio (r = 0.62, p = 0.01). There were significant relationships between performance in RSSAbest and training load parameters (workload: r = 0.52, p = 0.03; monotony: r = 0.62, p = 0.01; strain: r = 0.62, p = 0.009). Between T2-T3, there was a significant relationship between Δ\% of total mood disturbance and Δ\% of YYIR1 (r = -0.54; p = 0.04), RSSAbest (r = 0.58, p = 0.01), SJ (r = -0,55, p = 0.01), T (r = 0.53; p = 0.03), and T/C (r = 0.5; p = 0.04). Conclusion: An intensive period of congested match play significantly compromised elite soccer players' physical and mental fitness. These changes were related to psychological but not hormonal parameters; even though significant alterations were detected for selected measures. Mood monitoring could be a simple and useful tool to determine the degree of preparedness for match play during a congested period in professional soccer.}, language = {en} } @misc{SaidiBenAbderrahmanBoullosaetal.2020, author = {Saidi, Karim and Ben Abderrahman, Abderraouf and Boullosa, Daniel and Dupont, Gr{\´e}gory and Hackney, Anthony C. and Bideau, Benoit and Pavillon, Thomas and Granacher, Urs and Zouhal, Hassane}, title = {The Interplay Between Plasma Hormonal Concentrations, Physical Fitness, Workload and Mood State Changes to Periods of Congested Match Play in Professional Soccer Players}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {660}, issn = {1866-8364}, doi = {10.25932/publishup-47925}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-479259}, pages = {16}, year = {2020}, abstract = {Background: The regular assessment of hormonal and mood state parameters in professional soccer are proposed as good indicators during periods of intense training and/or competition to avoid overtraining. Objective: The aim of this study was to analyze hormonal, psychological, workload and physical fitness parameters in elite soccer players in relation to changes in training and match exposure during a congested period of match play. Methods: Sixteen elite soccer players from a team playing in the first Tunisian soccer league were evaluated three times (T1, T2, and T3) over 12 weeks. The non-congested period of match play was from T1 to T2, when the players played 6 games over 6 weeks. The congested period was from T2 to T3, when the players played 10 games over 6 weeks. From T1 to T3, players performed the Yo-Yo intermittent recovery test level 1 (YYIR1), the repeated shuttle sprint ability test (RSSA), the countermovement jump test (CMJ), and the squat jump test (SJ). Plasma Cortisol (C), Testosterone (T), and the T/C ratio were analyzed at T1, T2, and T3. Players had their mood dimensions (tension, depression, anger, vigor, fatigue, confusion, and a Total Mood Disturbance) assessed through the Profile of Mood State questionnaire (POMS). Training session rating of perceived exertion (sRPE) was also recorded on a daily basis in order to quantify internal training load and elements of monotony and strain. Results: Significant performance declines (T1 < T2 < T3) were found for SJ performance (p = 0.04, effect size [ES] ES₁₋₂ = 0.15-0.06, ES₂₋₃ = 0.24) from T1 to T3. YYIR1 performance improved significantly from T1 to T2 and declined significantly from T2 to T3 (p = 0.001, ES₁₋₂ = 0.24, ES₂₋₃ = -2.54). Mean RSSA performance was significantly higher (p = 0.019, ES₁₋₂ = -0.47, ES₂₋₃ = 1.15) in T3 compared with T2 and T1. Best RSSA performance was significantly higher in T3 when compared with T2 and T1 (p = 0.006, ES₂₋₃ = 0.47, ES₁₋₂ = -0.56), but significantly lower in T2 when compared with to T1. T and T/C were significantly lower in T3 when compared with T2 and T1 (T: p = 0.03, ES₃₋₂ = -0.51, ES₃₋₁ = -0.51, T/C: p = 0.017, ES₃₋₂ = -1.1, ES₃₋₁ = -1.07). Significant decreases were found for the vigor scores in T3 when compared to T2 and T1 (p = 0.002, ES₁₋₂ = 0.31, ES₃₋₂ = -1.25). A significant increase was found in fatigue scores in T3 as compared to T1 and T2 (p = 0.002, ES₁₋₂ = 0.43, ES₂₋₃ = 0.81). A significant increase was found from T1 < T2 < T3 intension score (p = 0.002, ES₁₋₂ = 1.1, ES₂₋₃ = 0.2) and anger score (p = 0.03, ES₁₋₂ = 0.47, ES₂₋₃ = 0.33) over the study period. Total mood disturbance increased significantly (p = 0.02, ES₁₋₂ = 0.91, ES₂₋₃ = 1.1) from T1 to T3. Between T1-T2, significant relationships were observed between workload and changes in T (r = 0.66, p = 0.003), and T/C ratio (r = 0.62, p = 0.01). There were significant relationships between performance in RSSAbest and training load parameters (workload: r = 0.52, p = 0.03; monotony: r = 0.62, p = 0.01; strain: r = 0.62, p = 0.009). Between T2-T3, there was a significant relationship between Δ\% of total mood disturbance and Δ\% of YYIR1 (r = -0.54; p = 0.04), RSSAbest (r = 0.58, p = 0.01), SJ (r = -0,55, p = 0.01), T (r = 0.53; p = 0.03), and T/C (r = 0.5; p = 0.04). Conclusion: An intensive period of congested match play significantly compromised elite soccer players' physical and mental fitness. These changes were related to psychological but not hormonal parameters; even though significant alterations were detected for selected measures. Mood monitoring could be a simple and useful tool to determine the degree of preparedness for match play during a congested period in professional soccer.}, language = {en} } @misc{PavillonTournyBenAbderrahmanetal.2020, author = {Pavillon, Thomas and Tourny, Claire and Ben Abderrahman, Abderraouf and Salhi, Iyed and Zouita, Sghaeir and Rouissi, Mehdi and Hackney, Anthony C. and Granacher, Urs and Zouhal, Hassane}, title = {Sprint and jump performances in highly trained young soccer players of different chronological age}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {697}, issn = {1866-8364}, doi = {10.25932/publishup-49055}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-490557}, pages = {12}, year = {2020}, abstract = {Objective The aim of this study was to examine the effects of two different sprint-training regimes on sprint and jump performances according to age in elite young male soccer players over the course of one soccer season. Methods Players were randomly assigned to two training groups. Group 1 performed systematic change-of-direction sprints (CODST, U19 [n = 9], U17 [n = 9], U15 [n = 10]) while group 2 conducted systematic linear sprints (LST, U19 [n = 9], U17 [n = 9], U15 [n = 9]). Training volumes were similar between groups (40 sprints per week x 30 weeks = 1200 sprints per season). Pre and post training, all players performed tests for the assessment of linear and slalom sprint speed (5-m and 10-m), countermovement jump, and maximal aerobic speed performance. Results For all physical fitness measures, the baseline-adjusted means data (ANCOVA) across the age groups showed no significant differences between LST and CODST at post (0.061 < p < 0.995; 0.0017 < d < 1.01). The analyses of baseline-adjusted means for all physical fitness measures for U15, U17, and U19 (LST vs. CODST) revealed no significant differences between LST and CODST for U15 (0.213 < p < 0.917; 0.001 < d < 0.087), U17 (0.132 < p < 0.976; 0.001 < d < 0.310), and U19 (0.300 < p < 0.999; 0.001 < d < 0.049) at post. Conclusions The results from this study showed that both, LST and CODST induced significant changes in the sprint, lower limbs power, and aerobic performances in young elite soccer players. Since no significant differences were observed between LST and CODST, the observed changes are most likely due to training and/or maturation. Therefore, more research is needed to elucidate whether CODST, LST or a combination of both is beneficial for youth soccer athletes' performance development.}, language = {en} } @article{HortobagyiGranacherFernandezdelOlmoetal.2020, author = {Hortobagyi, Tibor and Granacher, Urs and Fernandez-del-Olmo, Miguel and Howatson, Glyn and Manca, Andrea and Deriu, Franca and Taube, Wolfgang and Gruber, Markus and Marquez, Gonzalo and Lundbye-Jensen, Jesper and Colomer-Poveda, David}, title = {Functional relevance of resistance training-induced neuroplasticity in health and disease}, series = {Neuroscience \& biobehavioral reviews : official journal of the International Behavioral Neuroscience Society}, volume = {122}, journal = {Neuroscience \& biobehavioral reviews : official journal of the International Behavioral Neuroscience Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0149-7634}, doi = {10.1016/j.neubiorev.2020.12.019}, pages = {79 -- 91}, year = {2020}, abstract = {Repetitive, monotonic, and effortful voluntary muscle contractions performed for just a few weeks, i.e., resistance training, can substantially increase maximal voluntary force in the practiced task and can also increase gross motor performance. The increase in motor performance is often accompanied by neuroplastic adaptations in the central nervous system. While historical data assigned functional relevance to such adaptations induced by resistance training, this claim has not yet been systematically and critically examined in the context of motor performance across the lifespan in health and disease. A review of muscle activation, brain and peripheral nerve stimulation, and imaging data revealed that increases in motor performance and neuroplasticity tend to be uncoupled, making a mechanistic link between neuroplasticity and motor performance inconclusive. We recommend new approaches, including causal mediation analytical and hypothesis-driven models to substantiate the functional relevance of resistance training-induced neuroplasticity in the improvements of gross motor function across the lifespan in health and disease.}, language = {en} } @article{PavillonTournyBenAbderrahmanetal.2020, author = {Pavillon, Thomas and Tourny, Claire and Ben Abderrahman, Abderraouf and Salhi, Iyed and Zouita, Sghaeir and Rouissi, Mehdi and Hackney, Anthony C. and Granacher, Urs and Zouhal, Hassane}, title = {Sprint and jump performances in highly trained young soccer players of different chronological age}, series = {Journal of Exercise Science \& Fitness}, volume = {19}, journal = {Journal of Exercise Science \& Fitness}, number = {2}, publisher = {Elsevier}, address = {Singapore}, issn = {1728-869x}, doi = {10.1016/j.jesf.2020.10.003}, pages = {81 -- 90}, year = {2020}, abstract = {Objective The aim of this study was to examine the effects of two different sprint-training regimes on sprint and jump performances according to age in elite young male soccer players over the course of one soccer season. Methods Players were randomly assigned to two training groups. Group 1 performed systematic change-of-direction sprints (CODST, U19 [n = 9], U17 [n = 9], U15 [n = 10]) while group 2 conducted systematic linear sprints (LST, U19 [n = 9], U17 [n = 9], U15 [n = 9]). Training volumes were similar between groups (40 sprints per week x 30 weeks = 1200 sprints per season). Pre and post training, all players performed tests for the assessment of linear and slalom sprint speed (5-m and 10-m), countermovement jump, and maximal aerobic speed performance. Results For all physical fitness measures, the baseline-adjusted means data (ANCOVA) across the age groups showed no significant differences between LST and CODST at post (0.061 < p < 0.995; 0.0017 < d < 1.01). The analyses of baseline-adjusted means for all physical fitness measures for U15, U17, and U19 (LST vs. CODST) revealed no significant differences between LST and CODST for U15 (0.213 < p < 0.917; 0.001 < d < 0.087), U17 (0.132 < p < 0.976; 0.001 < d < 0.310), and U19 (0.300 < p < 0.999; 0.001 < d < 0.049) at post. Conclusions The results from this study showed that both, LST and CODST induced significant changes in the sprint, lower limbs power, and aerobic performances in young elite soccer players. Since no significant differences were observed between LST and CODST, the observed changes are most likely due to training and/or maturation. Therefore, more research is needed to elucidate whether CODST, LST or a combination of both is beneficial for youth soccer athletes' performance development.}, language = {en} } @article{LesinskiSchmelcherHerzetal.2020, author = {Lesinski, Melanie and Schmelcher, Alina and Herz, Michael and Puta, Christian and Gabriel, Holger and Arampatzis, Adamantios and Laube, Gunnar and B{\"u}sch, Dirk and Granacher, Urs}, title = {Maturation-, age-, and sex-specific anthropometric and physical fitness percentiles of German elite young athletes}, series = {Plos One}, volume = {15}, journal = {Plos One}, number = {8}, publisher = {Plos One}, address = {San Francisco, California}, issn = {1932-6203}, doi = {10.1371/journal.pone.0237423}, pages = {19}, year = {2020}, abstract = {The aim of this study was to establish maturation-, age-, and sex-specific anthropometric and physical fitness percentile reference values of young elite athletes from various sports. Anthropometric (i.e., standing and sitting body height, body mass, body mass index) and physical fitness (i.e., countermovement jump, drop jump, change-of-direction speed [i.e., T-test], trunk muscle endurance [i.e., ventral Bourban test], dynamic lower limbs balance [i.e., Y-balance test], hand grip strength) of 703 male and female elite young athletes aged 8-18 years were collected to aggregate reference values according to maturation, age, and sex. Findings indicate that body height and mass were significantly higher (p<0.001; 0.95≤d≤1.74) in more compared to less mature young athletes as well as with increasing chronological age (p<0.05; 0.66≤d≤3.13). Furthermore, male young athletes were significantly taller and heavier compared to their female counterparts (p<0.001; 0.34≤d≤0.50). In terms of physical fitness, post-pubertal athletes showed better countermovement jump, drop jump, change-of-direction, and handgrip strength performances (p<0.001; 1.57≤d≤8.72) compared to pubertal athletes. Further, countermovement jump, drop jump, change-of-direction, and handgrip strength performances increased with increasing chronological age (p<0.05; 0.29≤d≤4.13). In addition, male athletes outperformed their female counterpart in the countermovement jump, drop jump, change-of-direction, and handgrip strength (p<0.05; 0.17≤d≤0.76). Significant age by sex interactions indicate that sex-specific differences were even more pronounced with increasing age. Conclusively, body height, body mass, and physical fitness increased with increasing maturational status and chronological age. Sex-specific differences appear to be larger as youth grow older. Practitioners can use the percentile values as approximate benchmarks for talent identification and development.}, language = {en} } @article{GranacherNobariRuivoAlvesetal.2020, author = {Granacher, Urs and Nobari, Hadi and Ruivo Alves, Ana and Clemente, Filipe Manuel and P{\´e}rez-G{\´o}mez, Jorge and Clark, Cain Craig Truman and Zouhal, Hassane}, title = {Associations Between Variations in Accumulated Workload and Physiological Variables in Young Male Soccer Players Over the Course of a Season}, series = {Frontiers in physiology}, volume = {12}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2021.638180}, pages = {1 -- 12}, year = {2020}, abstract = {This study sought to analyze the relationship between in-season training workload with changes in aerobic power (VO2max), maximum and resting heart rate (HRmax and HRrest), linear sprint medium (LSM), and short test (LSS), in soccer players younger than 16 years (under-16 soccer players). We additionally aimed to explain changes in fitness levels during the in-season through regression models, considering accumulated load, baseline levels, and peak height velocity (PHV) as predictors. Twenty-three male sub-elite soccer players aged 15.5 ± 0.2 years (PHV: 13.6 ± 0.4 years; body height: 172.7 ± 4.2 cm; body mass: 61.3 ± 5.6 kg; body fat: 13.7\% ± 3.9\%; VO2max: 48.4 ± 2.6 mL⋅kg-1⋅min-1), were tested three times across the season (i.e., early-season (EaS), mid-season (MiS), and end-season (EnS) for VO2max, HRmax, LSM, and LSS. Aerobic and speed variables gradually improved over the season and had a strong association with PHV. Moreover, the HRmax demonstrated improvements from EaS to EnS; however, this was more evident in the intermediate period (from EaS to MiS) and had a strong association with VO2max. Regression analysis showed significant predictions for VO2max [F(2, 20) = 8.18, p ≤ 0.001] with an R2 of 0.45. In conclusion, the meaningful variation of youth players' fitness levels can be observed across the season, and such changes can be partially explained by the load imposed.}, language = {en} }