@article{NegraChaabeneSammoudetal.2017, author = {Negra, Yassine and Chaabene, Helmi and Sammoud, Senda and Bouguezzi, Raja and Abbes, Mohamed Aymen and Hachana, Younes and Granacher, Urs}, title = {Effects of Plyometric Training on Physical Fitness in Prepuberal Soccer Athletes}, series = {International journal of sports medicine}, volume = {38}, journal = {International journal of sports medicine}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0042-122337}, pages = {370 -- 377}, year = {2017}, abstract = {This study aimed at examining the effects of plyometric training on stable (SPT) vs. unstable (UPT) surfaces on physical fitness in prepuberal soccer players. Male athletes were randomly assigned to SPT (n = 18; age = 12.7 +/- 0.2 years) or UPT (n = 16; age = 12.2 +/- 0.5 years). Both groups conducted 3 regular soccer training sessions per week combined with either 2 SPT or UPT sessions. Assessment of jumping ability (countermovement jump [CMJ], and standing long jump [SLJ]), speed (10-m, 20-m, 30-m sprint), agility (Illinois agility test [IAT]), and balance (stable [SSBT], unstable [USBT] stork balance test; stable [SYBT], unstable [UYBT] Y balance test) was conducted pre-and post-training. An ANCO-VA model was used to test for between-group differences (SPT vs. UPT) at post-test using baseline values as covariates. No significant differences were found for CMJ height (p > 0.05, d = 0.54), SLJ (p > 0.05; d = 0.81), 10-m, 20-m, and 30-m sprint performances (p > 0.05, d = 0.00-0.24), IAT (p > 0.05, d = 0.48), and dynamic balance (SYBT and UYBT, both p > 0.05, d = 0.39, 0.08, respectively). Statistically significant between-group differences were detected for the USBT (p < 0.01, d = 1.86) and the SSBT (p < 0.01, d = 1.75) in favor of UPT. Following 8 weeks of SPT or UPT in prepuberal athletes, similar performance levels were observed in both groups for measures of jumping ability, speed, dynamic balance, and agility. However, if the goal is to additionally enhance static balance, UPT has an advantage over SPT.}, language = {en} } @article{ThielePrieskeChaabeneetal.2020, author = {Thiele, Dirk and Prieske, Olaf and Chaabene, Helmi and Granacher, Urs}, title = {Effects of strength training on physical fitness and sport-specific performance in recreational, sub-elite, and elite rowers}, series = {Journal of sports sciences}, volume = {38}, journal = {Journal of sports sciences}, number = {10}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0264-0414}, doi = {10.1080/02640414.2020.1745502}, pages = {1186 -- 1195}, year = {2020}, abstract = {The purpose of this systematic review with meta-analysis was to examine the effects of strength training (ST) on selected components of physical fitness (e.g., lower/upper limb maximal strength, muscular endurance, jump performance, cardiorespiratory endurance) and sport-specific performance in rowers. Only studies with an active control group were included if they examined the effects of ST on at least one proxy of physical fitness and/or sport-specific performance in rowers. Weighted and averaged standardized mean differences (SMD) were calculated using random-effects models. Subgroup analyses were computed to identify effects of ST type or expertise level on sport-specific performance. Our analyses revealed significant small effects of ST on lower limb maximal strength (SMD = 0.42, p = 0.05) and on sport-specific performance (SMD = 0.32, p = 0.05). Non-significant effects were found for upper limb maximal strength, upper/lower limb muscular endurance, jump performance, and cardiorespiratory endurance. Subgroup analyses for ST type and expertise level showed non-significant differences between the respective subgroups of rowers (p >= 0.32). Our systematic review with meta-analysis indicated that ST is an effective means for improving lower limb maximal strength and sport-specific performance in rowers. However, ST-induced effects are neither modulated by ST type nor rowers' expertise level.}, language = {en} } @article{NegraChaabeneFernandezFernandezetal.2020, author = {Negra, Yassine and Chaabene, Helmi and Fernandez-Fernandez, Jaime and Sammoud, Senda and Bouguezzi, Raja and Prieske, Olaf and Granacher, Urs}, title = {Short-term plyometric Jump training improves repeated-sprint ability in prepuberal male soccer players}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {34}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {11}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000002703}, pages = {3241 -- 3249}, year = {2020}, abstract = {This study examined the effects of a short-term (i.e., 8 weeks) combined horizontal and vertical plyometric jump training (PJT) program in combination with regular soccer-specific training as compared with soccer-specific training only on jump and change of direction (CoD) performances, speed, and repeated-sprint ability (RSA) in prepuberal male soccer players. Twenty-four players were recruited and randomly assigned to either a PJT group (PJT(G); n = 13; 12.7 +/- 0.2 years) or an active control group (CONG; n = 11; 12.7 +/- 0.2 years). The outcome measures included tests for the assessment of jump performance (drop jump from 20- to 40-cm height [DJ20 and DJ40] and 3-hop test [THT]), speed (20-m sprint), CoD (T-test), and RSA (20-m repeated shuttle sprint). Data were analyzed using magnitude-based inferences. Within-group analyses revealed large performance improvements in the T-test (d = -1.2), DJ20 (d = 3.7), DJ40 (d = 3.6), THT (d = 0.6), and the RSA(total) (d = -1.6) in the PJT(G). Between-group analyses showed greater performance improvements in the T-test (d = -2.9), 20-m sprint time (d = -2.0), DJ20 (d = 2.4), DJ40 (d = 2.0), THT (d = 1.9), RSA(best) (d = -1.9), and the RSA(total) (d = -1.9) in the PJT(G) compared with CONG. Eight weeks of an in-season PJT in addition to regular soccer-specific training induced larger increases in measures of physical fitness in prepuberal male soccer players compared with regular soccer-specific training only. More specifically, PJT was effective in improving RSA performance.}, language = {en} } @article{NegraChaabeneSammoudetal.2017, author = {Negra, Yassine and Chaabene, Helmi and Sammoud, Senda and Bouguezzi, Raja and Mkaouer, Bessem and Hachana, Younes and Granacher, Urs}, title = {EFFECTS OF PLYOMETRIC TRAINING ON COMPONENTS OF PHYSICAL FITNESS IN PREPUBERAL MALE SOCCER ATHLETES: THE ROLE OF SURFACE INSTABILITY}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {31}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, pages = {3295 -- 3304}, year = {2017}, abstract = {Previous studies contrasted the effects of plyometric training (PT) conducted on stable vs. unstable surfaces on components of physical fitness in child and adolescent soccer players. Depending on the training modality (stable vs. unstable), specific performance improvements were found for jump (stable PT) and balance performances (unstable PT). In an attempt to combine the effects of both training modalities, this study examined the effects of PT on stable surfaces compared with combined PT on stable and unstable surfaces on components of physical fitness in prepuberal male soccer athletes. Thirty-three boys were randomly assigned to either a PT on stable surfaces (PTS; n = 17; age = 12.1 +/- 0.5 years; height = 151.6 +/- 5.7 cm; body mass = 39.2 +/- 6.5 kg; and maturity offset = 22.3 +/- 0.5 years) or a combined PT on stable and unstable surfaces (PTC; n = 16; age = 12.2 +/- 0.6 years; height = 154.6 +/- 8.1 cm; body mass = 38.7 +/- 5.0 kg; and maturity offset = 22.2 +/- 0.6 years). Both intervention groups conducted 4 soccer-specific training sessions per week combined with either 2 PTS or PTC sessions. Before and after 8 weeks of training, proxies of muscle power (e.g., countermovement jump [CMJ], standing long jump [SLJ]), muscle strength (e.g., reactive strength index [RSI]), speed (e.g., 20-m sprint test), agility (e.g., modified Illinois change of direction test [MICODT]), static balance (e.g., stable stork bal-ance test [SSBT]), and dynamic balance (unstable stork balance test [USBT]) were tested. An analysis of covariance model was used to test between-group differences (PTS vs. PTC) at posttest using baseline outcomes as covariates. No significant between-group differences at posttest were observed for CMJ (p > 0.05, d = 0.41), SLJ (p > 0.05, d = 0.36), RSI (p > 0.05, d = 0.57), 20-m sprint test (p > 0.05, d = 0.06), MICODT (p > 0.05, d = 0.23), and SSBT (p > 0.05, d = 0.20). However, statistically significant between-group differences at posttest were noted for the USBT (p < 0.01, d = 1.49) in favor of the PTC group. For most physical fitness tests (except RSI), significant pre-to-post improvements were observed for both groups (p < 0.01, d = 0.55-3.96). Eight weeks of PTS or PTC resulted in similar performance improvements in components of physical fitness except for dynamic balance. From a performance-enhancing perspective, PTC is recommended for pediatric strength and conditioning coaches because it produced comparable training effects as PTS on proxies of muscle power, muscle strength, speed, agility, static balance, and additional effects on dynamic balance.}, language = {en} }