@misc{NevillNegraMyersetal.2021, author = {Nevill, Alan M. and Negra, Yassine and Myers, Tony D. and Duncan, Michael J. and Chaabene, Helmi and Granacher, Urs}, title = {Are Early or Late Maturers Likely to Be Fitter in the General Population?}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {695}, issn = {1866-8364}, doi = {10.25932/publishup-48992}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489928}, pages = {18}, year = {2021}, abstract = {The present study aims to identify the optimal body-size/shape and maturity characteristics associated with superior fitness test performances having controlled for body-size, sex, and chronological-age differences. The sample consisted of 597 Tunisian children (396 boys and 201 girls) aged 8 to 15 years. Three sprint speeds recorded at 10, 20 and 30 m; two vertical and two horizontal jump tests; a change-of-direction and a handgrip-strength tests, were assessed during physical-education classes. Allometric modelling was used to identify the benefit of being an early or late maturer. Findings showed that being tall and light is the ideal shape to be successful at most physical fitness tests, but the height-to-weight "shape" ratio seems to be test-dependent. Having controlled for body-size/shape, sex, and chronological age, the model identified maturity-offset as an additional predictor. Boys who go earlier/younger through peak-height-velocity (PHV) outperform those who go at a later/older age. However, most of the girls' physical-fitness tests peaked at the age at PHV and decline thereafter. Girls whose age at PHV was near the middle of the age range would appear to have an advantage compared to early or late maturers. These findings have important implications for talent scouts and coaches wishing to recruit children into their sports/athletic clubs.}, language = {en} } @article{NevillNegraMyersetal.2021, author = {Nevill, Alan M. and Negra, Yassine and Myers, Tony D. and Duncan, Michael J. and Chaabene, Helmi and Granacher, Urs}, title = {Are Early or Late Maturers Likely to Be Fitter in the General Population?}, series = {International Journal of Environmental Research and Public Health}, volume = {18}, journal = {International Journal of Environmental Research and Public Health}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {1660-4601}, doi = {10.3390/ijerph18020497}, pages = {16}, year = {2021}, abstract = {The present study aims to identify the optimal body-size/shape and maturity characteristics associated with superior fitness test performances having controlled for body-size, sex, and chronological-age differences. The sample consisted of 597 Tunisian children (396 boys and 201 girls) aged 8 to 15 years. Three sprint speeds recorded at 10, 20 and 30 m; two vertical and two horizontal jump tests; a change-of-direction and a handgrip-strength tests, were assessed during physical-education classes. Allometric modelling was used to identify the benefit of being an early or late maturer. Findings showed that being tall and light is the ideal shape to be successful at most physical fitness tests, but the height-to-weight "shape" ratio seems to be test-dependent. Having controlled for body-size/shape, sex, and chronological age, the model identified maturity-offset as an additional predictor. Boys who go earlier/younger through peak-height-velocity (PHV) outperform those who go at a later/older age. However, most of the girls' physical-fitness tests peaked at the age at PHV and decline thereafter. Girls whose age at PHV was near the middle of the age range would appear to have an advantage compared to early or late maturers. These findings have important implications for talent scouts and coaches wishing to recruit children into their sports/athletic clubs.}, language = {en} } @article{NegraChaabeneFernandezFernandezetal.2020, author = {Negra, Yassine and Chaabene, Helmi and Fernandez-Fernandez, Jaime and Sammoud, Senda and Bouguezzi, Raja and Prieske, Olaf and Granacher, Urs}, title = {Short-term plyometric Jump training improves repeated-sprint ability in prepuberal male soccer players}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {34}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {11}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000002703}, pages = {3241 -- 3249}, year = {2020}, abstract = {This study examined the effects of a short-term (i.e., 8 weeks) combined horizontal and vertical plyometric jump training (PJT) program in combination with regular soccer-specific training as compared with soccer-specific training only on jump and change of direction (CoD) performances, speed, and repeated-sprint ability (RSA) in prepuberal male soccer players. Twenty-four players were recruited and randomly assigned to either a PJT group (PJT(G); n = 13; 12.7 +/- 0.2 years) or an active control group (CONG; n = 11; 12.7 +/- 0.2 years). The outcome measures included tests for the assessment of jump performance (drop jump from 20- to 40-cm height [DJ20 and DJ40] and 3-hop test [THT]), speed (20-m sprint), CoD (T-test), and RSA (20-m repeated shuttle sprint). Data were analyzed using magnitude-based inferences. Within-group analyses revealed large performance improvements in the T-test (d = -1.2), DJ20 (d = 3.7), DJ40 (d = 3.6), THT (d = 0.6), and the RSA(total) (d = -1.6) in the PJT(G). Between-group analyses showed greater performance improvements in the T-test (d = -2.9), 20-m sprint time (d = -2.0), DJ20 (d = 2.4), DJ40 (d = 2.0), THT (d = 1.9), RSA(best) (d = -1.9), and the RSA(total) (d = -1.9) in the PJT(G) compared with CONG. Eight weeks of an in-season PJT in addition to regular soccer-specific training induced larger increases in measures of physical fitness in prepuberal male soccer players compared with regular soccer-specific training only. More specifically, PJT was effective in improving RSA performance.}, language = {en} } @article{GebelLehmannGranacher2020, author = {Gebel, Arnd and Lehmann, Tim and Granacher, Urs}, title = {Balance task difficulty affects postural sway and cortical activity in healthy adolescents}, series = {Experimental brain research}, volume = {238}, journal = {Experimental brain research}, number = {5}, publisher = {Springer}, address = {New York}, issn = {0014-4819}, doi = {10.1007/s00221-020-05810-1}, pages = {1323 -- 1333}, year = {2020}, abstract = {Electroencephalographic (EEG) research indicates changes in adults' low frequency bands of frontoparietal brain areas executing different balance tasks with increasing postural demands. However, this issue is unsolved for adolescents when performing the same balance task with increasing difficulty. Therefore, we examined the effects of a progressively increasing balance task difficulty on balance performance and brain activity in adolescents. Thirteen healthy adolescents aged 16-17 year performed tests in bipedal upright stance on a balance board with six progressively increasing levels of task difficulty. Postural sway and cortical activity were recorded simultaneously using a pressure sensitive measuring system and EEG. The power spectrum was analyzed for theta (4-7 Hz) and alpha-2 (10-12 Hz) frequency bands in pre-defined frontal, central, and parietal clusters of electrocortical sources. Repeated measures analysis of variance (rmANOVA) showed a significant main effect of task difficulty for postural sway (p < 0.001; d = 6.36). Concomitantly, the power spectrum changed in frontal, bilateral central, and bilateral parietal clusters. RmANOVAs revealed significant main effects of task difficulty for theta band power in the frontal (p < 0.001, d = 1.80) and both central clusters (left: p < 0.001, d = 1.49; right: p < 0.001, d = 1.42) as well as for alpha-2 band power in both parietal clusters (left: p < 0.001, d = 1.39; right: p < 0.001, d = 1.05) and in the central right cluster (p = 0.005, d = 0.92). Increases in theta band power (frontal, central) and decreases in alpha-2 power (central, parietal) with increasing balance task difficulty may reflect increased attentional processes and/or error monitoring as well as increased sensory information processing due to increasing postural demands. In general, our findings are mostly in agreement with studies conducted in adults. Similar to adult studies, our data with adolescents indicated the involvement of frontoparietal brain areas in the regulation of postural control. In addition, we detected that activity of selected brain areas (e.g., bilateral central) changed with increasing postural demands.}, language = {en} } @article{MoranPaxtonJonesetal.2020, author = {Moran, Jason and Paxton, Kevin and Jones, Ben and Granacher, Urs and Sandercock, Gavin Rh and Hope, Edward and Ramirez-Campillo, Rodrigo}, title = {Variable long-term developmental trajectories of short sprint speed and jumping height in English Premier League academy soccer players: an applied case study}, series = {Journal of sports sciences}, volume = {38}, journal = {Journal of sports sciences}, number = {22}, publisher = {Routledge, Taylor \& Francis Group}, address = {London}, issn = {0264-0414}, doi = {10.1080/02640414.2020.1792689}, pages = {2525 -- 2531}, year = {2020}, abstract = {Growth and maturation affect long term physical performance, making the appraisal of athletic ability difficult. We sought to longitudinally track youth soccer players to assess the developmental trajectory of athletic performance over a 6-year period in an English Premier League academy. Age-specific z-scores were calculated for sprint and jump performance from a sample of male youth soccer players (n = 140). A case study approach was used to analyse the longitudinal curves of the six players with the longest tenure. The trajectories of the sprint times of players 1 and 3 were characterised by a marked difference in respective performance levels up until peak height velocity (PHV) when player 1 achieved a substantial increase in sprint speed and player 3 experienced a large decrease. Player 5 was consistently a better performer than player 2 until PHV when the sprint and jump performance of the former markedly decreased and he was overtaken by the latter. Fluctuations in players' physical performance can occur quickly and in drastic fashion. Coaches must be aware that suppressed, or inflated, performance could be temporary and selection and deselection decisions should not be made based on information gathered over a short time period.}, language = {en} } @article{GebelLuederGranacher2019, author = {Gebel, Arnd and L{\"u}der, Benjamin and Granacher, Urs}, title = {Effects of Increasing Balance Task Difficulty on Postural Sway and Muscle Activity in Healthy Adolescents}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, number = {9}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.01135}, pages = {13}, year = {2019}, abstract = {Evidence-based prescriptions for balance training in youth have recently been established. However, there is currently no standardized means available to assess and quantify balance task difficulty (BTD). Therefore, the objectives of this study were to examine the effects of graded BTD on postural sway, lower limb muscle activity and coactivation in adolescents. Thirteen healthy high-school students aged 16 to 17 volunteered to participate in this cross-sectional study. Testing involved participants to stand on a commercially available balance board with an adjustable pivot that allowed six levels of increasing task difficulty. Postural sway [i.e., total center of pressure (CoP) displacements] and lower limb muscle activity were recorded simultaneously during each trial. Surface electromyography (EMG) was applied in muscles encompassing the ankle (m. tibialis anterior, medial gastrocnemius, peroneus longus) and knee joint (m. vastus medialis, biceps femoris). The coactivation index (CAI) was calculated for ankle and thigh muscles. Repeated measures analyses of variance revealed a significant main effect of BTD with increasing task difficulty for postural sway (p < 0.001; d = 6.36), muscle activity (p < 0.001; 2.19 < d < 4.88), and CAI (p < 0.001; 1.32 < d < 1.41). Multiple regression analyses showed that m. tibialis anterior activity best explained overall CoP displacements with 32.5\% explained variance (p < 0.001). The observed increases in postural sway, lower limb muscle activity, and coactivation indicate increasing postural demands while standing on the balance board. Thus, the examined board can be implemented in balance training to progressively increase BTD in healthy adolescents.}, language = {en} } @article{BenOthmanChaouachiChaouachietal.2019, author = {Ben Othman, Aymen and Chaouachi, Anis and Chaouachi, Mehdi and Makhlouf, Issam and Farthing, Jonathan P. and Granacher, Urs and Behm, David George}, title = {Dominant and nondominant leg press training induce similar contralateral and ipsilateral limb training adaptations with children}, series = {Applied Physiology, Nutrition, and Metabolism}, volume = {44}, journal = {Applied Physiology, Nutrition, and Metabolism}, number = {9}, publisher = {NRC Research Press}, address = {Ottawa}, issn = {1715-5312}, doi = {10.1139/apnm-2018-0766}, pages = {973 -- 984}, year = {2019}, abstract = {Cross-education has been extensively investigated with adults. Adult studies report asymmetrical cross-education adaptations predominately after dominant limb training. The objective of the study was to examine unilateral leg press (LP) training of the dominant or nondominant leg on contralateral and ipsilateral strength and balance measures. Forty-two youth (10-13 years) were placed (random allocation) into a dominant (n = 15) or nondominant (n = 14) leg press training group or nontraining control (n = 13). Experimental groups trained 3 times per week for 8 weeks and were tested pre-/post-training for ipsilateral and contralateral 1-repetition maximum (RM) horizontal LP, maximum voluntary isometric contraction (MVIC) of knee extensors (KE) and flexors (KF), countermovement jump (CMJ), triple hop test (THT), MVIC strength of elbow flexors (EF) and handgrip, as well as the stork and Y balance tests. Both dominant and nondominant LP training significantly (p < 0.05) increased both ipsilateral and contralateral lower body strength (LP 1RM (dominant: 59.6\%-81.8\%; nondominant: 59.5\%-96.3\%), KE MVIC (dominant: 12.4\%-18.3\%; nondominant: 8.6\%-18.6\%), KF MVIC (dominant: 7.9\%-22.3\%; nondominant: nonsignificant-3.8\%), and power (CMJ: dominant: 11.1\%-18.1\%; nondominant: 7.7\%-16.6\%)). The exception was that nondominant LP training demonstrated a nonsignificant change with the contralateral KF MVIC. Other significant improvements were with nondominant LP training on ipsilateral EF 1RM (6.2\%) and THT (9.6\%). There were no significant changes with EF and handgrip MVIC. The contralateral leg stork balance test was impaired following dominant LP training. KF MVIC exhibited the only significant relative post-training to pretraining (post-test/pre-test) ratio differences between dominant versus nondominant LP cross-education training effects. In conclusion, children exhibit symmetrical cross-education or global training adaptations with unilateral training of dominant or nondominant upper leg.}, language = {en} } @misc{GebelLuederGranacher2019, author = {Gebel, Arnd and L{\"u}der, Benjamin and Granacher, Urs}, title = {Effects of Increasing Balance Task Difficulty on Postural Sway and Muscle Activity in Healthy Adolescents}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {583}, issn = {1866-8364}, doi = {10.25932/publishup-43921}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439211}, pages = {15}, year = {2019}, abstract = {Evidence-based prescriptions for balance training in youth have recently been established. However, there is currently no standardized means available to assess and quantify balance task difficulty (BTD). Therefore, the objectives of this study were to examine the effects of graded BTD on postural sway, lower limb muscle activity and coactivation in adolescents. Thirteen healthy high-school students aged 16 to 17 volunteered to participate in this cross-sectional study. Testing involved participants to stand on a commercially available balance board with an adjustable pivot that allowed six levels of increasing task difficulty. Postural sway [i.e., total center of pressure (CoP) displacements] and lower limb muscle activity were recorded simultaneously during each trial. Surface electromyography (EMG) was applied in muscles encompassing the ankle (m. tibialis anterior, medial gastrocnemius, peroneus longus) and knee joint (m. vastus medialis, biceps femoris). The coactivation index (CAI) was calculated for ankle and thigh muscles. Repeated measures analyses of variance revealed a significant main effect of BTD with increasing task difficulty for postural sway (p < 0.001; d = 6.36), muscle activity (p < 0.001; 2.19 < d < 4.88), and CAI (p < 0.001; 1.32 < d < 1.41). Multiple regression analyses showed that m. tibialis anterior activity best explained overall CoP displacements with 32.5\% explained variance (p < 0.001). The observed increases in postural sway, lower limb muscle activity, and coactivation indicate increasing postural demands while standing on the balance board. Thus, the examined board can be implemented in balance training to progressively increase BTD in healthy adolescents.}, language = {en} } @article{PutaSteidtenBaumbachetal.2018, author = {Puta, Christian and Steidten, Thomas and Baumbach, Philipp and Woehrl, Toni and May, Rico and Kellmann, Michael and Herbsleb, Marco and Gabriel, Brunhild and Weber, Stephanie and Granacher, Urs and Gabriel, Holger H. W.}, title = {Standardized assessment of resistance training-Induced subjective symptoms and objective signs of immunological stress responses in young athletes}, series = {Frontiers in physiology}, volume = {9}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00698}, pages = {11}, year = {2018}, abstract = {From a health and performance-related perspective, it is crucial to evaluate subjective symptoms and objective signs of acute training-induced immunological responses in young athletes. The limited number of available studies focused on immunological adaptations following aerobic training. Hardly any studies have been conducted on resistance-training induced stress responses. Therefore, the aim of this observational study was to investigate subjective symptoms and objective signs of immunological stress responses following resistance training in young athletes. Fourteen (7 females and 7 males) track and field athletes with a mean age of 16.4 years and without any symptoms of upper or lower respiratory tract infections participated in this study. Over a period of 7 days, subjective symptoms using the Acute Recovery and Stress Scale (ARSS) and objective signs of immunological responses using capillary blood markers were taken each morning and after the last training session. Differences between morning and evening sessions and associations between subjective and objective parameters were analyzed using generalized estimating equations (GEE). In post hoc analyses, daily change-scores of the ARSS dimensions were compared between participants and revealed specific changes in objective capillary blood samples. In the GEE models, recovery (ARSS) was characterized by a significant decrease while stress (ARSS) showed a significant increase between morning and evening-training sessions. A concomitant increase in white blood cell count (WBC), granulocytes (GRAN) and percentage shares of granulocytes (GRAN\%) was found between morning and evening sessions. Of note, percentage shares of lymphocytes (LYM\%) showed a significant decrease. Furthermore, using multivariate regression analyses, we identified that recovery was significantly associated with LYM\%, while stress was significantly associated with WBC and GRAN\%. Post hoc analyses revealed significantly larger increases in participants' stress dimensions who showed increases in GRAN\%. For recovery, significantly larger decreases were found in participants with decreases in LYM\% during recovery. More specifically, daily change-scores of the recovery and stress dimensions of the ARSS were associated with specific changes in objective immunological markers (GRAN\%, LYM\%) between morning and evening-training sessions. Our results indicate that changes of subjective symptoms of recovery and stress dimensions using the ARSS were associated with specific changes in objectively measured immunological markers.}, language = {en} } @article{SlimaniParavlicGranacher2018, author = {Slimani, Maamer and Paravlic, Armin and Granacher, Urs}, title = {A Meta-Analysis to Determine Strength Training Related Dose-Response Relationships for Lower-Limb Muscle Power Development in Young Athletes}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.01155}, pages = {1 -- 14}, year = {2018}, abstract = {It is well-documented that strength training (ST) improves measures of muscle strength in young athletes. Less is known on transfer effects of ST on proxies of muscle power and the underlying dose-response relationships. The objectives of this meta-analysis were to quantify the effects of ST on lower limb muscle power in young athletes and to provide dose-response relationships for ST modalities such as frequency, intensity, and volume. A systematic literature search of electronic databases identified 895 records. Studies were eligible for inclusion if (i) healthy trained children (girls aged 6-11 y, boys aged 6-13 y) or adolescents (girls aged 12-18 y, boys aged 14-18 y) were examined, (ii) ST was compared with an active control, and (iii) at least one proxy of muscle power [squat jump (SJ) and countermovement jump height (CMJ)] was reported. Weighted mean standardized mean differences (SMDwm) between subjects were calculated. Based on the findings from 15 statistically aggregated studies, ST produced significant but small effects on CMJ height (SMDwm = 0.65; 95\% CI 0.34-0.96) and moderate effects on SJ height (SMDwm = 0.80; 95\% CI 0.23-1.37). The sub-analyses revealed that the moderating variable expertise level (CMJ height: p = 0.06; SJ height: N/A) did not significantly influence ST-related effects on proxies of muscle power. "Age" and "sex" moderated ST effects on SJ (p = 0.005) and CMJ height (p = 0.03), respectively. With regard to the dose-response relationships, findings from the meta-regression showed that none of the included training modalities predicted ST effects on CMJ height. For SJ height, the meta-regression indicated that the training modality "training duration" significantly predicted the observed gains (p = 0.02), with longer training durations (>8 weeks) showing larger improvements. This meta-analysis clearly proved the general effectiveness of ST on lower-limb muscle power in young athletes, irrespective of the moderating variables. Dose-response analyses revealed that longer training durations (>8 weeks) are more effective to improve SJ height. No such training modalities were found for CMJ height. Thus, there appear to be other training modalities besides the ones that were included in our analyses that may have an effect on SJ and particularly CMJ height. ST monitoring through rating of perceived exertion, movement velocity or force-velocity profile could be promising monitoring tools for lower-limb muscle power development in young athletes.}, language = {en} }