@article{BrahmsHeinzelRappetal.2022, author = {Brahms, Markus and Heinzel, Stephan and Rapp, Michael A. and M{\"u}ckstein, Marie and Hortob{\´a}gyi, Tibor and Stelzel, Christine and Granacher, Urs}, title = {The acute effects of mental fatigue on balance performance in healthy young and older adults - A systematic review and meta-analysis}, series = {Acta Psychologica}, volume = {225}, journal = {Acta Psychologica}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-6297}, doi = {10.1016/j.actpsy.2022.103540}, pages = {1 -- 13}, year = {2022}, abstract = {Cognitive resources contribute to balance control. There is evidence that mental fatigue reduces cognitive resources and impairs balance performance, particularly in older adults and when balance tasks are complex, for example when trying to walk or stand while concurrently performing a secondary cognitive task. We conducted a systematic literature search in PubMed (MEDLINE), Web of Science and Google Scholar to identify eligible studies and performed a random effects meta-analysis to quantify the effects of experimentally induced mental fatigue on balance performance in healthy adults. Subgroup analyses were computed for age (healthy young vs. healthy older adults) and balance task complexity (balance tasks with high complexity vs. balance tasks with low complexity) to examine the moderating effects of these factors on fatigue-mediated balance performance. We identified 7 eligible studies with 9 study groups and 206 participants. Analysis revealed that performing a prolonged cognitive task had a small but significant effect (SMDwm = -0.38) on subsequent balance performance in healthy young and older adults. However, age- and task-related differences in balance responses to fatigue could not be confirmed statistically. Overall, aggregation of the available literature indicates that mental fatigue generally reduces balance in healthy adults. However, interactions between cognitive resource reduction, aging and balance task complexity remain elusive.}, language = {en} } @article{SandauGranacher2022, author = {Sandau, Ingo and Granacher, Urs}, title = {Long-term monitoring of training load, force-velocity profile, and Performance in elite weightlifters: a case series with two male Olympic athletes}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {36}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {12}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia, Pa.}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000004228}, pages = {3446 -- 3455}, year = {2022}, abstract = {The aim of this case series approach was to analyze weekly changes in force-velocity relationship (FvR) parameters ((v) over bar, (F) over bar (0), (P) over bar (max)) and theoretical snatch performance (snatchth) assessed through a specific snatch pull test in preparation of the European and World Championships in 2 male elite weightlifters. A second aim was to examine associations of training load (volume, volume load, average load), barbell -, and snatchth over a period of 2 macrocycles in preparation of the same competitions. FvR-parameters, snatchth, training load data, and body mass were assessed weekly over 40 weeks. Using the smallest real difference approach, significant (p <= 0.05) decreases in (v) over bar (0) and increases in (v) over bar, (F) over bar (0), (P) over bar (max), and snatchth were found within macrocycles. However, the large significant loss in body mass (approximate to 11\%) in athlete 1 during macrocycle 2 represents most likely a main factor for diminished (P) over bar (max), and snatchth in macrocycle 2. Based on cross-correlation analyses, barbell FvR-parameters and snatchth were significantly (p <= 0.05) associated with maximal strength, muscle power, and speed training load variables. Moderate correlations (0.31-0.47) were found between training load and (P) over bar (max) and snatchth in athlete 2. It can be concluded that the applied training loads elicits improvements in <(P)(max) and snatchth because the athlete approached the main competitions. However, because of the large loss in body mass, the relations between training load and barbell FvR-parameters and snatchth were less clear in athlete 1. It seems that a loss in body mass as a result of a change in bodyweight category mitigates <(P)over bar>(max) development during the macrocycle and hindered to reach peak snatchth at the main competitions.}, language = {en} } @article{ZhouFischerBrahmsetal.2023, author = {Zhou, Lin and Fischer, Eric and Brahms, Clemens Markus and Granacher, Urs and Arnrich, Bert}, title = {DUO-GAIT}, series = {Scientific data}, volume = {10}, journal = {Scientific data}, number = {1}, publisher = {Nature Publ. Group}, address = {London}, issn = {2052-4463}, doi = {10.1038/s41597-023-02391-w}, pages = {10}, year = {2023}, abstract = {In recent years, there has been a growing interest in developing and evaluating gait analysis algorithms based on inertial measurement unit (IMU) data, which has important implications, including sports, assessment of diseases, and rehabilitation. Multi-tasking and physical fatigue are two relevant aspects of daily life gait monitoring, but there is a lack of publicly available datasets to support the development and testing of methods using a mobile IMU setup. We present a dataset consisting of 6-minute walks under single- (only walking) and dual-task (walking while performing a cognitive task) conditions in unfatigued and fatigued states from sixteen healthy adults. Especially, nine IMUs were placed on the head, chest, lower back, wrists, legs, and feet to record under each of the above-mentioned conditions. The dataset also includes a rich set of spatio-temporal gait parameters that capture the aspects of pace, symmetry, and variability, as well as additional study-related information to support further analysis. This dataset can serve as a foundation for future research on gait monitoring in free-living environments.}, language = {en} }