@article{BeurskensHaegerKliegletal.2016, author = {Beurskens, Rainer and Haeger, Matthias and Kliegl, Reinhold and Roecker, Kai and Granacher, Urs}, title = {Postural Control in Dual-Task Situations: Does Whole-Body Fatigue Matter?}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0147392}, pages = {1379 -- 1384}, year = {2016}, abstract = {Postural control is important to cope with demands of everyday life. It has been shown that both attentional demand (i.e., cognitive processing) and fatigue affect postural control in young adults. However, their combined effect is still unresolved. Therefore, we investigated the effects of fatigue on single-(ST) and dual-task (DT) postural control. Twenty young subjects (age: 23.7 +/- 2.7) performed an all-out incremental treadmill protocol. After each completed stage, one-legged-stance performance on a force platform under ST (i.e., one-legged-stance only) and DT conditions (i.e., one-legged-stance while subtracting serial 3s) was registered. On a second test day, subjects conducted the same balance tasks for the control condition (i.e., non-fatigued). Results showed that heart rate, lactate, and ventilation increased following fatigue (all p < 0.001; d = 4.2-21). Postural sway and sway velocity increased during DT compared to ST (all p < 0.001; d = 1.9-2.0) and fatigued compared to non-fatigued condition (all p < 0.001; d = 3.3-4.2). In addition, postural control deteriorated with each completed stage during the treadmill protocol (all p < 0.01; d = 1.9-3.3). The addition of an attention-demanding interference task did not further impede one-legged-stance performance. Although both additional attentional demand and physical fatigue affected postural control in healthy young adults, there was no evidence for an overadditive effect (i.e., fatigue-related performance decrements in postural control were similar under ST and DT conditions). Thus, attentional resources were sufficient to cope with the DT situations in the fatigue condition of this experiment.}, language = {en} } @article{BeurskensMuehlbauerGrabowetal.2016, author = {Beurskens, Rainer and M{\"u}hlbauer, Thomas and Grabow, Lena and Kliegl, Reinhold and Granacher, Urs}, title = {Effects of Backpack Carriage on Dual-Task Performance in Children During Standing and Walking}, series = {Journal of motor behavior}, volume = {48}, journal = {Journal of motor behavior}, publisher = {Wiley-VCH}, address = {Abingdon}, issn = {0022-2895}, doi = {10.1080/00222895.2016.1152137}, pages = {500 -- 508}, year = {2016}, language = {en} } @misc{GranacherLesinskiBueschetal.2016, author = {Granacher, Urs and Lesinski, Melanie and Buesch, Dirk and M{\"u}hlbauer, Thomas and Prieske, Olaf and Puta, Christian and Gollhofer, Albert and Behm, David George}, title = {Effects of Resistance Training in Youth Athletes on Muscular Fitness and Athletic Performance: A Conceptual Model for Long-Term Athlete Development}, series = {Frontiers in physiology}, volume = {7}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2016.00164}, pages = {14}, year = {2016}, abstract = {During the stages of long-term athlete development (LTAD), resistance training (RT) is an important means for (i) stimulating athletic development, (ii) tolerating the demands of long-term training and competition, and (iii) inducing long-term health promoting effects that are robust over time and track into adulthood. However, there is a gap in the literature with regards to optimal RT methods during LTAD and how RT is linked to biological age. Thus, the aims of this scoping review were (i) to describe and discuss the effects of RT on muscular fitness and athletic performance in youth athletes, (ii) to introduce a conceptual model on how to appropriately implement different types of RT within LTAD stages, and (iii) to identify research gaps from the existing literature by deducing implications for future research. In general, RT produced small -to -moderate effects on muscular fitness and athletic performance in youth athletes with muscular strength showing the largest improvement. Free weight, complex, and plyometric training appear to be well -suited to improve muscular fitness and athletic performance. In addition, balance training appears to be an important preparatory (facilitating) training program during all stages of LTAD but particularly during the early stages. As youth athletes become more mature, specificity, and intensity of RT methods increase. This scoping review identified research gaps that are summarized in the following and that should be addressed in future studies: (i) to elucidate the influence of gender and biological age on the adaptive potential following RT in youth athletes (especially in females), (ii) to describe RT protocols in more detail (i.e., always report stress and strain based parameters), and (iii) to examine neuromuscular and tendomuscular adaptations following RT in youth athletes.}, language = {en} } @article{PutaSteidtenBaumbachetal.2018, author = {Puta, Christian and Steidten, Thomas and Baumbach, Philipp and Woehrl, Toni and May, Rico and Kellmann, Michael and Herbsleb, Marco and Gabriel, Brunhild and Weber, Stephanie and Granacher, Urs and Gabriel, Holger H. W.}, title = {Standardized assessment of resistance training-Induced subjective symptoms and objective signs of immunological stress responses in young athletes}, series = {Frontiers in physiology}, volume = {9}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00698}, pages = {11}, year = {2018}, abstract = {From a health and performance-related perspective, it is crucial to evaluate subjective symptoms and objective signs of acute training-induced immunological responses in young athletes. The limited number of available studies focused on immunological adaptations following aerobic training. Hardly any studies have been conducted on resistance-training induced stress responses. Therefore, the aim of this observational study was to investigate subjective symptoms and objective signs of immunological stress responses following resistance training in young athletes. Fourteen (7 females and 7 males) track and field athletes with a mean age of 16.4 years and without any symptoms of upper or lower respiratory tract infections participated in this study. Over a period of 7 days, subjective symptoms using the Acute Recovery and Stress Scale (ARSS) and objective signs of immunological responses using capillary blood markers were taken each morning and after the last training session. Differences between morning and evening sessions and associations between subjective and objective parameters were analyzed using generalized estimating equations (GEE). In post hoc analyses, daily change-scores of the ARSS dimensions were compared between participants and revealed specific changes in objective capillary blood samples. In the GEE models, recovery (ARSS) was characterized by a significant decrease while stress (ARSS) showed a significant increase between morning and evening-training sessions. A concomitant increase in white blood cell count (WBC), granulocytes (GRAN) and percentage shares of granulocytes (GRAN\%) was found between morning and evening sessions. Of note, percentage shares of lymphocytes (LYM\%) showed a significant decrease. Furthermore, using multivariate regression analyses, we identified that recovery was significantly associated with LYM\%, while stress was significantly associated with WBC and GRAN\%. Post hoc analyses revealed significantly larger increases in participants' stress dimensions who showed increases in GRAN\%. For recovery, significantly larger decreases were found in participants with decreases in LYM\% during recovery. More specifically, daily change-scores of the recovery and stress dimensions of the ARSS were associated with specific changes in objective immunological markers (GRAN\%, LYM\%) between morning and evening-training sessions. Our results indicate that changes of subjective symptoms of recovery and stress dimensions using the ARSS were associated with specific changes in objectively measured immunological markers.}, language = {en} } @article{PrieskeChaabenePutaetal.2019, author = {Prieske, Olaf and Chaabene, Helmi and Puta, Christian and Behm, David George and B{\"u}sch, Dirk and Granacher, Urs}, title = {Effects of Drop Height on Jump Performance in Male and Female Elite Adolescent Handball Players}, series = {International journal of sports physiology and performance}, volume = {14}, journal = {International journal of sports physiology and performance}, number = {5}, publisher = {Human Kinetics Publ.}, address = {Champaign}, issn = {1555-0265}, doi = {10.1123/ijspp.2018-0482}, pages = {674 -- 680}, year = {2019}, abstract = {Purpose: To examine the effects of drop height on drop-jump (DJ) performance and on associations between DJ and horizontal-jump/sprint performances in adolescent athletes. Methods: Male (n = 119, 2.5 [0.6] y post-peak-height velocity) and female (n = 120, 2.5 [0.5] y post-peak-height velocity) adolescent handball players (national level) performed DJs in randomized order using 3 drop heights (20, 35, and 50 cm). DJ performance (jump height, reactive strength index [RSI]) was analyzed using the Optojump Next system. In addition, correlations were computed between DJ height and RSI with standing-long-jump and 20-m linear-sprint performances. Results: Statistical analyses revealed medium-size main effects of drop height for DJ height and RSI (P <.001, 0.63 <= d <= 0.71). Post hoc tests indicated larger DJ heights from 20 to 35 and 35 to 50 cm (P <=.031, 0.33 <= d <= 0.71) and better RSI from 20- to 35-cm drop height (P <.001, d = 0.77). No significant difference was found for RSI between 35- and 50-cm drop height. Irrespective of drop height, associations of DJ height and RSI were small with 5-m-split time (-.27 <= r <=.05), medium with 10-m-split time (-.44 <= r <=.14), and medium to large with 20-m sprint time and standing-long-jump distance (-.57 <= r <=.22). Conclusions: The present findings indicate that, irrespective of sex, 35-cm drop heights are best suited to induce rapid and powerful DJ performance (ie, RSI) during reactive strength training in elite adolescent handball players. Moreover, training-related gains in DJ performance may at least partly translate to gains in horizontal jump and longer sprint distances (ie, >= 20-m) and/or vice versa in male and female elite adolescent athletes, irrespective of drop height.}, language = {en} } @misc{SaidiZouhalRhibietal.2019, author = {Saidi, Karim and Zouhal, Hassane and Rhibi, Fatma and Tijani, Jed M. and Boullosa, Daniel and Chebbi, Amel and Hackney, Anthony C. and Granacher, Urs and Bideau, Benoit and Ben Abderrahman, Abderraouf}, title = {Effects of a six-week period of congested match play on plasma volume variations, hematological parameters, training workload and physical fitness in elite soccer players}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {572}, issn = {1866-8364}, doi = {10.25932/publishup-43716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437166}, pages = {17}, year = {2019}, abstract = {Objectives The aims of this study were to investigate the effects of a six-week in-season period of soccer training and games (congested period) on plasma volume variations (PV), hematological parameters, and physical fitness in elite players. In addition, we analyzed relationships between training load, hematological parameters and players' physical fitness. Methods Eighteen elite players were evaluated before (T1) and after (T2) a six-week in-season period interspersed with 10 soccer matches. At T1 and T2, players performed the Yo-Yo intermittent recovery test level 1 (YYIR1), the repeated shuttle sprint ability test (RSSA), the countermovement jump test (CMJ), and the squat jump test (SJ). In addition, PV and hematological parameters (erythrocytes [M/mm3], hematocrit [\%], hemoglobin [g/dl], mean corpuscular volume [fl], mean corpuscular hemoglobin content [pg], and mean hemoglobin concentration [\%]) were assessed. Daily ratings of perceived exertion (RPE) were monitored in order to quantify the internal training load. Results From T1 to T2, significant performance declines were found for the YYIR1 (p<0.001, effect size [ES] = 0.5), RSSA (p<0.01, ES = 0.6) and SJ tests (p< 0.046, ES = 0.7). However, no significant changes were found for the CMJ (p = 0.86, ES = 0.1). Post-exercise, RSSA blood lactate (p<0.012, ES = 0.2) and PV (p<0.01, ES = 0.7) increased significantly from T1 to T2. A significant decrease was found from T1 to T2 for the erythrocyte value (p<0.002, ES = 0.5) and the hemoglobin concentration (p<0.018, ES = 0.8). The hematocrit percentage rate was also significantly lower (p<0.001, ES = 0.6) at T2. The mean corpuscular volume, mean corpuscular hemoglobin content and the mean hemoglobin content values were not statistically different from T1 to T2. No significant relationships were detected between training load parameters and percentage changes of hematological parameters. However, a significant relationship was observed between training load and changes in RSSA performance (r = -0.60; p<0.003). Conclusions An intensive period of "congested match play" over 6 weeks significantly compromised players' physical fitness. These changes were not related to hematological parameters, even though significant alterations were detected for selected measures.}, language = {en} } @article{SaidiZouhalRhibietal.2019, author = {Saidi, Karim and Zouhal, Hassane and Rhibi, Fatma and Tijani, Jed M. and Boullosa, Daniel and Chebbi, Amel and Hackney, Anthony C. and Granacher, Urs and Bideau, Benoit and Ben Abderrahman, Abderraouf}, title = {Effects of a six-week period of congested match play on plasma volume variations, hematological parameters, training workload and physical fitness in elite soccer players}, series = {PLOS ONE}, volume = {14}, journal = {PLOS ONE}, number = {7}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0219692}, pages = {17}, year = {2019}, abstract = {Objectives The aims of this study were to investigate the effects of a six-week in-season period of soccer training and games (congested period) on plasma volume variations (PV), hematological parameters, and physical fitness in elite players. In addition, we analyzed relationships between training load, hematological parameters and players' physical fitness. Methods Eighteen elite players were evaluated before (T1) and after (T2) a six-week in-season period interspersed with 10 soccer matches. At T1 and T2, players performed the Yo-Yo intermittent recovery test level 1 (YYIR1), the repeated shuttle sprint ability test (RSSA), the countermovement jump test (CMJ), and the squat jump test (SJ). In addition, PV and hematological parameters (erythrocytes [M/mm3], hematocrit [\%], hemoglobin [g/dl], mean corpuscular volume [fl], mean corpuscular hemoglobin content [pg], and mean hemoglobin concentration [\%]) were assessed. Daily ratings of perceived exertion (RPE) were monitored in order to quantify the internal training load. Results From T1 to T2, significant performance declines were found for the YYIR1 (p<0.001, effect size [ES] = 0.5), RSSA (p<0.01, ES = 0.6) and SJ tests (p< 0.046, ES = 0.7). However, no significant changes were found for the CMJ (p = 0.86, ES = 0.1). Post-exercise, RSSA blood lactate (p<0.012, ES = 0.2) and PV (p<0.01, ES = 0.7) increased significantly from T1 to T2. A significant decrease was found from T1 to T2 for the erythrocyte value (p<0.002, ES = 0.5) and the hemoglobin concentration (p<0.018, ES = 0.8). The hematocrit percentage rate was also significantly lower (p<0.001, ES = 0.6) at T2. The mean corpuscular volume, mean corpuscular hemoglobin content and the mean hemoglobin content values were not statistically different from T1 to T2. No significant relationships were detected between training load parameters and percentage changes of hematological parameters. However, a significant relationship was observed between training load and changes in RSSA performance (r = -0.60; p<0.003). Conclusions An intensive period of "congested match play" over 6 weeks significantly compromised players' physical fitness. These changes were not related to hematological parameters, even though significant alterations were detected for selected measures.}, language = {en} } @misc{ZhouFischerTuncaetal.2020, author = {Zhou, Lin and Fischer, Eric and Tunca, Can and Brahms, Clemens Markus and Ersoy, Cem and Granacher, Urs and Arnrich, Bert}, title = {How We Found Our IMU}, series = {Postprints der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Postprints der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {2}, doi = {10.25932/publishup-48162}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-481628}, pages = {31}, year = {2020}, abstract = {Inertial measurement units (IMUs) are commonly used for localization or movement tracking in pervasive healthcare-related studies, and gait analysis is one of the most often studied topics using IMUs. The increasing variety of commercially available IMU devices offers convenience by combining the sensor modalities and simplifies the data collection procedures. However, selecting the most suitable IMU device for a certain use case is increasingly challenging. In this study, guidelines for IMU selection are proposed. In particular, seven IMUs were compared in terms of their specifications, data collection procedures, and raw data quality. Data collected from the IMUs were then analyzed by a gait analysis algorithm. The difference in accuracy of the calculated gait parameters between the IMUs could be used to retrace the issues in raw data, such as acceleration range or sensor calibration. Based on our algorithm, we were able to identify the best-suited IMUs for our needs. This study provides an overview of how to select the IMUs based on the area of study with concrete examples, and gives insights into the features of seven commercial IMUs using real data.}, language = {en} } @misc{AlbertOwolabiGebeletal.2020, author = {Albert, Justin Amadeus and Owolabi, Victor and Gebel, Arnd and Brahms, Clemens Markus and Granacher, Urs and Arnrich, Bert}, title = {Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard}, series = {Postprints der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Postprints der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {3}, doi = {10.25932/publishup-48413}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-484130}, pages = {24}, year = {2020}, abstract = {Gait analysis is an important tool for the early detection of neurological diseases and for the assessment of risk of falling in elderly people. The availability of low-cost camera hardware on the market today and recent advances in Machine Learning enable a wide range of clinical and health-related applications, such as patient monitoring or exercise recognition at home. In this study, we evaluated the motion tracking performance of the latest generation of the Microsoft Kinect camera, Azure Kinect, compared to its predecessor Kinect v2 in terms of treadmill walking using a gold standard Vicon multi-camera motion capturing system and the 39 marker Plug-in Gait model. Five young and healthy subjects walked on a treadmill at three different velocities while data were recorded simultaneously with all three camera systems. An easy-to-administer camera calibration method developed here was used to spatially align the 3D skeleton data from both Kinect cameras and the Vicon system. With this calibration, the spatial agreement of joint positions between the two Kinect cameras and the reference system was evaluated. In addition, we compared the accuracy of certain spatio-temporal gait parameters, i.e., step length, step time, step width, and stride time calculated from the Kinect data, with the gold standard system. Our results showed that the improved hardware and the motion tracking algorithm of the Azure Kinect camera led to a significantly higher accuracy of the spatial gait parameters than the predecessor Kinect v2, while no significant differences were found between the temporal parameters. Furthermore, we explain in detail how this experimental setup could be used to continuously monitor the progress during gait rehabilitation in older people.}, language = {en} } @article{AlbertOwolabiGebeletal.2020, author = {Albert, Justin Amadeus and Owolabi, Victor and Gebel, Arnd and Brahms, Clemens Markus and Granacher, Urs and Arnrich, Bert}, title = {Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s20185104}, pages = {22}, year = {2020}, abstract = {Gait analysis is an important tool for the early detection of neurological diseases and for the assessment of risk of falling in elderly people. The availability of low-cost camera hardware on the market today and recent advances in Machine Learning enable a wide range of clinical and health-related applications, such as patient monitoring or exercise recognition at home. In this study, we evaluated the motion tracking performance of the latest generation of the Microsoft Kinect camera, Azure Kinect, compared to its predecessor Kinect v2 in terms of treadmill walking using a gold standard Vicon multi-camera motion capturing system and the 39 marker Plug-in Gait model. Five young and healthy subjects walked on a treadmill at three different velocities while data were recorded simultaneously with all three camera systems. An easy-to-administer camera calibration method developed here was used to spatially align the 3D skeleton data from both Kinect cameras and the Vicon system. With this calibration, the spatial agreement of joint positions between the two Kinect cameras and the reference system was evaluated. In addition, we compared the accuracy of certain spatio-temporal gait parameters, i.e., step length, step time, step width, and stride time calculated from the Kinect data, with the gold standard system. Our results showed that the improved hardware and the motion tracking algorithm of the Azure Kinect camera led to a significantly higher accuracy of the spatial gait parameters than the predecessor Kinect v2, while no significant differences were found between the temporal parameters. Furthermore, we explain in detail how this experimental setup could be used to continuously monitor the progress during gait rehabilitation in older people.}, language = {en} } @article{ZhouFischerTuncaetal.2020, author = {Zhou, Lin and Fischer, Eric and Tunca, Can and Brahms, Clemens Markus and Ersoy, Cem and Granacher, Urs and Arnrich, Bert}, title = {How We Found Our IMU}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s20154090}, pages = {29}, year = {2020}, abstract = {Inertial measurement units (IMUs) are commonly used for localization or movement tracking in pervasive healthcare-related studies, and gait analysis is one of the most often studied topics using IMUs. The increasing variety of commercially available IMU devices offers convenience by combining the sensor modalities and simplifies the data collection procedures. However, selecting the most suitable IMU device for a certain use case is increasingly challenging. In this study, guidelines for IMU selection are proposed. In particular, seven IMUs were compared in terms of their specifications, data collection procedures, and raw data quality. Data collected from the IMUs were then analyzed by a gait analysis algorithm. The difference in accuracy of the calculated gait parameters between the IMUs could be used to retrace the issues in raw data, such as acceleration range or sensor calibration. Based on our algorithm, we were able to identify the best-suited IMUs for our needs. This study provides an overview of how to select the IMUs based on the area of study with concrete examples, and gives insights into the features of seven commercial IMUs using real data.}, language = {en} } @article{TrautmannZhouBrahmsetal.2021, author = {Trautmann, Justin and Zhou, Lin and Brahms, Clemens Markus and Tunca, Can and Ersoy, Cem and Granacher, Urs and Arnrich, Bert}, title = {TRIPOD}, series = {Data : open access ʻData in scienceʼ journal}, volume = {6}, journal = {Data : open access ʻData in scienceʼ journal}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2306-5729}, doi = {10.3390/data6090095}, pages = {19}, year = {2021}, abstract = {Inertial measurement units (IMUs) enable easy to operate and low-cost data recording for gait analysis. When combined with treadmill walking, a large number of steps can be collected in a controlled environment without the need of a dedicated gait analysis laboratory. In order to evaluate existing and novel IMU-based gait analysis algorithms for treadmill walking, a reference dataset that includes IMU data as well as reliable ground truth measurements for multiple participants and walking speeds is needed. This article provides a reference dataset consisting of 15 healthy young adults who walked on a treadmill at three different speeds. Data were acquired using seven IMUs placed on the lower body, two different reference systems (Zebris FDMT-HQ and OptoGait), and two RGB cameras. Additionally, in order to validate an existing IMU-based gait analysis algorithm using the dataset, an adaptable modular data analysis pipeline was built. Our results show agreement between the pressure-sensitive Zebris and the photoelectric OptoGait system (r = 0.99), demonstrating the quality of our reference data. As a use case, the performance of an algorithm originally designed for overground walking was tested on treadmill data using the data pipeline. The accuracy of stride length and stride time estimations was comparable to that reported in other studies with overground data, indicating that the algorithm is equally applicable to treadmill data. The Python source code of the data pipeline is publicly available, and the dataset will be provided by the authors upon request, enabling future evaluations of IMU gait analysis algorithms without the need of recording new data.}, language = {en} } @misc{TrautmannZhouBrahmsetal.2021, author = {Trautmann, Justin and Zhou, Lin and Brahms, Clemens Markus and Tunca, Can and Ersoy, Cem and Granacher, Urs and Arnrich, Bert}, title = {TRIPOD - A Treadmill Walking Dataset with IMU, Pressure-distribution and Photoelectric Data for Gait Analysis}, series = {Postprints der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Postprints der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {6}, doi = {10.25932/publishup-52202}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522027}, pages = {21}, year = {2021}, abstract = {Inertial measurement units (IMUs) enable easy to operate and low-cost data recording for gait analysis. When combined with treadmill walking, a large number of steps can be collected in a controlled environment without the need of a dedicated gait analysis laboratory. In order to evaluate existing and novel IMU-based gait analysis algorithms for treadmill walking, a reference dataset that includes IMU data as well as reliable ground truth measurements for multiple participants and walking speeds is needed. This article provides a reference dataset consisting of 15 healthy young adults who walked on a treadmill at three different speeds. Data were acquired using seven IMUs placed on the lower body, two different reference systems (Zebris FDMT-HQ and OptoGait), and two RGB cameras. Additionally, in order to validate an existing IMU-based gait analysis algorithm using the dataset, an adaptable modular data analysis pipeline was built. Our results show agreement between the pressure-sensitive Zebris and the photoelectric OptoGait system (r = 0.99), demonstrating the quality of our reference data. As a use case, the performance of an algorithm originally designed for overground walking was tested on treadmill data using the data pipeline. The accuracy of stride length and stride time estimations was comparable to that reported in other studies with overground data, indicating that the algorithm is equally applicable to treadmill data. The Python source code of the data pipeline is publicly available, and the dataset will be provided by the authors upon request, enabling future evaluations of IMU gait analysis algorithms without the need of recording new data.}, language = {en} } @article{SariatiZouhalHammamietal.2021, author = {Sariati, Dorsaf and Zouhal, Hassane and Hammami, Raouf and Clark, Cain Craig Truman and Nebigh, Ammar and Chtara, Moktar and Hackney, Anthony C. and Souissi, Nizar and Granacher, Urs and Ben Ounis, Omar}, title = {Association between mental imagery and change of direction performance in young elite soccer players of different maturity status}, series = {Frontiers in Psychology}, volume = {12}, journal = {Frontiers in Psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.665508}, pages = {9}, year = {2021}, abstract = {Previous studies have not considered the potential influence of maturity status on the relationship between mental imagery and change of direction (CoD) speed in youth soccer. Accordingly, this cross-sectional study examined the association between mental imagery and CoD performance in young elite soccer players of different maturity status. Forty young male soccer players, aged 10-17 years, were assigned into two groups according to their predicted age at peak height velocity (PHV) (Pre-PHV; n = 20 and Post-PHV; n = 20). Participants were evaluated on soccer-specific tests of CoD with (CoDBall-15m) and without (CoD-15m) the ball. Participants completed the movement imagery questionnaire (MIQ) with the three- dimensional structure, internal visual imagery (IVI), external visual imagery (EVI), as well as kinesthetic imagery (KI). The Post-PHV players achieved significantly better results than Pre-PHV in EVI (ES = 1.58, large; p < 0.001), CoD-15m (ES = 2.09, very large; p < 0.001) and CoDBall-15m (ES = 1.60, large; p < 0.001). Correlations were significantly different between maturity groups, where, for the pre-PHV group, a negative very large correlation was observed between CoDBall-15m and KI (r = -0.73, p = 0.001). For the post-PHV group, large negative correlations were observed between CoD-15m and IVI (r = -0.55, p = 0.011), EVI (r = -062, p = 0.003), and KI (r = -0.52, p = 0.020). A large negative correlation of CoDBall-15m with EVI (r = -0.55, p = 0.012) and very large correlation with KI (r = -0.79, p = 0.001) were also observed. This study provides evidence of the theoretical and practical use for the CoD tasks stimulus with imagery. We recommend that sport psychology specialists, coaches, and athletes integrated imagery for CoD tasks in pre-pubertal soccer players to further improve CoD related performance.}, language = {en} } @article{KasmiZouhalHammamietal.2021, author = {Kasmi, Sofien and Zouhal, Hassane and Hammami, Raouf and Clark, Cain Craig Truman and Hackney, Anthony C. and Hammami, Amri and Chtara, Moktar and Chortane, Sabri Gaied and Ben Salah, Fatma Zohra and Granacher, Urs and Ben Ounis, Omar}, title = {The effects of eccentric and plyometric training programs and their combination on stability and the functional performance in the post-ACL-surgical rehabilitation period of elite female athletes}, series = {Frontiers in physiology}, volume = {12}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2021.688385}, pages = {11}, year = {2021}, abstract = {Background: The standard method to treat physically active patients with anterior cruciate ligament (ACL) rupture is ligament reconstruction surgery. The rehabilitation training program is very important to improve functional performance in recreational athletes following ACL reconstruction. Objectives: The aims of this study were to compare the effects of three different training programs, eccentric training (ECC), plyometric training (PLYO), or combined eccentric and plyometric training (COMB), on dynamic balance (Y-BAL), the Lysholm Knee Scale (LKS), the return to sport index (RSI), and the leg symmetry index (LSI) for the single leg hop test for distance in elite female athletes after ACL surgery. Materials and Methods: Fourteen weeks after rehabilitation from surgery, 40 elite female athletes (20.3 ± 3.2 years), who had undergone an ACL reconstruction, participated in a short-term (6 weeks; two times a week) training study. All participants received the same rehabilitation protocol prior to the training study. Athletes were randomly assigned to three experimental groups, ECC (n = 10), PLYO (n = 10), and COMB (n = 10), and to a control group (CON: n = 10). Testing was conducted before and after the 6-week training programs and included the Y-BAL, LKS, and RSI. LSI was assessed after the 6-week training programs only. Results: Adherence rate was 100\% across all groups and no training or test-related injuries were reported. No significant between-group baseline differences (pre-6-week training) were observed for any of the parameters. Significant group-by-time interactions were found for Y-BAL (p < 0.001, ES = 1.73), LKS (p < 0.001, ES = 0.76), and RSI (p < 0.001, ES = 1.39). Contrast analysis demonstrated that COMB yielded significantly greater improvements in Y-BAL, LKS, and RSI (all p < 0.001), in addition to significantly better performances in LSI (all p < 0.001), than CON, PLYO, and ECC, respectively. Conclusion: In conclusion, combined (eccentric/plyometric) training seems to represent the most effective training method as it exerts positive effects on both stability and functional performance in the post-ACL-surgical rehabilitation period of elite female athletes.}, language = {en} } @article{RamachandranSinghRamirezCampilloetal.2021, author = {Ramachandran, Akhilesh Kumar and Singh, Utkarsh and Ramirez-Campillo, Rodrigo and Clemente, Filipe Manuel and Afonso, Jos{\´e} and Granacher, Urs}, title = {Effects of Plyometric Jump Training on Balance Performance in Healthy Participants: A Systematic Review With Meta-Analysis / Effects of plyometric-jump training on balance performance in healthy individuals across the lifespan: A systematic review with meta-analysisist}, series = {Frontiers in Physiology}, volume = {12}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2021.730945}, pages = {22}, year = {2021}, abstract = {Postural balance represents a fundamental movement skill for the successful performance of everyday and sport-related activities. There is ample evidence on the effectiveness of balance training on balance performance in athletic and non-athletic population. However, less is known on potential transfer effects of other training types, such as plyometric jump training (PJT) on measures of balance. Given that PJT is a highly dynamic exercise mode with various forms of jump-landing tasks, high levels of postural control are needed to successfully perform PJT exercises. Accordingly, PJT has the potential to not only improve measures of muscle strength and power but also balance. To systematically review and synthetize evidence from randomized and non-randomized controlled trials regarding the effects of PJT on measures of balance in apparently healthy participants. Systematic literature searches were performed in the electronic databases PubMed, Web of Science, and SCOPUS. A PICOS approach was applied to define inclusion criteria, (i) apparently healthy participants, with no restrictions on their fitness level, sex, or age, (ii) a PJT program, (iii) active controls (any sport-related activity) or specific active controls (a specific exercise type such as balance training), (iv) assessment of dynamic, static balance pre- and post-PJT, (v) randomized controlled trials and controlled trials. The methodological quality of studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. This meta-analysis was computed using the inverse variance random-effects model. The significance level was set at p <0.05. The initial search retrieved 8,251 plus 23 records identified through other sources. Forty-two articles met our inclusion criteria for qualitative and 38 for quantitative analysis (1,806 participants [990 males, 816 females], age range 9-63 years). PJT interventions lasted between 4 and 36 weeks. The median PEDro score was 6 and no study had low methodological quality (≤3). The analysis revealed significant small effects of PJT on overall (dynamic and static) balance (ES = 0.46; 95\% CI = 0.32-0.61; p < 0.001), dynamic (e.g., Y-balance test) balance (ES = 0.50; 95\% CI = 0.30-0.71; p < 0.001), and static (e.g., flamingo balance test) balance (ES = 0.49; 95\% CI = 0.31-0.67; p < 0.001). The moderator analyses revealed that sex and/or age did not moderate balance performance outcomes. When PJT was compared to specific active controls (i.e., participants undergoing balance training, whole body vibration training, resistance training), both PJT and alternative training methods showed similar effects on overall (dynamic and static) balance (p = 0.534). Specifically, when PJT was compared to balance training, both training types showed similar effects on overall (dynamic and static) balance (p = 0.514). Conclusion: Compared to active controls, PJT showed small effects on overall balance, dynamic and static balance. Additionally, PJT produced similar balance improvements compared to other training types (i.e., balance training). Although PJT is widely used in athletic and recreational sport settings to improve athletes' physical fitness (e.g., jumping; sprinting), our systematic review with meta-analysis is novel in as much as it indicates that PJT also improves balance performance. The observed PJT-related balance enhancements were irrespective of sex and participants' age. Therefore, PJT appears to be an adequate training regime to improve balance in both, athletic and recreational settings.}, language = {en} } @article{AraziAsadiKhalkhalietal.2020, author = {Arazi, Hamid and Asadi, Abbas and Khalkhali, Farhood and Boullosa, Daniel and Hackney, Anthony C. and Granacher, Urs and Zouhal, Hassane}, title = {Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players}, series = {Frontiers in Physiology}, volume = {11}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2020.00608}, pages = {7}, year = {2020}, abstract = {This study aimed to investigate the relationship between the acute to chronic workload ratio (ACWR), based upon participant session rating of perceived exertion (sRPE), using two models [(1) rolling averages (ACWRRA); and (2) exponentially weighted moving averages (ACWREWMA)] and the injury rate in young male team soccer players aged 17.1 ± 0.7 years during a competitive mesocycle. Twenty-two players were enrolled in this study and performed four training sessions per week with 2 days of recovery and 1 match day per week. During each training session and each weekly match, training time and sRPE were recorded. In addition, training impulse (TRIMP), monotony, and strain were subsequently calculated. The rate of injury was recorded for each soccer player over a period of 4 weeks (i.e., 28 days) using a daily questionnaire. The results showed that over the course of the study, the number of non-contact injuries was significantly higher than that for contact injuries (2.5 vs. 0.5, p = 0.01). There were also significant positive correlations between sRPE and training time (r = 0.411, p = 0.039), ACWRRA (r = 0.47, p = 0.049), and ACWREWMA (r = 0.51, p = 0.038). In addition, small-to-medium correlations were detected between ACWR and non-contact injury occurrence (ACWRRA, r = 0.31, p = 0.05; ACWREWMA, r = 0.53, p = 0.03). Explained variance (r 2) for non-contact injury was significantly greater using the ACWREWMA model (ranging between 21 and 52\%) compared with ACWRRA (ranging between 17 and 39\%). In conclusion, the results of this study showed that the ACWREWMA model is more sensitive than ACWRRA to identify non-contact injury occurrence in male team soccer players during a short period in the competitive season.}, language = {en} } @article{MuecksteinHeinzelGranacheretal.2022, author = {M{\"u}ckstein, Marie and Heinzel, Stephan and Granacher, Urs and Brahms, Markus and Rapp, Michael A. and Stelzel, Christine}, title = {Modality-specific effects of mental fatigue in multitasking}, series = {Acta psychologica : international journal of psychonomics}, volume = {230}, journal = {Acta psychologica : international journal of psychonomics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0001-6918}, doi = {10.1016/j.actpsy.2022.103766}, pages = {12}, year = {2022}, abstract = {The mechanisms underlying increased dual-task costs in the comparison of modality compatible stimulus -response mappings (e.g., visual-manual, auditory-vocal) and modality incompatible mappings (e.g., visual -vocal, auditory-manual) remain elusive. To investigate whether additional control mechanisms are at work in simultaneously processing two modality incompatible mappings, we applied a transfer logic between both types of dual-task mappings in the context of a mental fatigue induction. We expected an increase in dual-task costs for both modality mappings after a fatigue induction with modality compatible tasks. In contrast, we expected an additional, selective increase in modality incompatible dual-task costs after a fatigue induction with modality incompatible tasks. We tested a group of 45young individuals (19-30 years) in an online pre-post design, in which participants were assigned to one of three groups. The two fatigue groups completed a 90-min time-on -task intervention with a dual task comprising either compatible or incompatible modality mappings. The third group paused for 90 min as a passive control group. Pre and post-session contained single and dual tasks in both modality mappings for all participants. In addition to behavioral performance measurements, seven subjective items (effort, focus, subjective fatigue, motivation, frustration, mental and physical capacity) were analyzed. Mean dual-task performance during and after the intervention indicated a practice effect instead of the presumed fatigue effect for all three groups. The modality incompatible intervention group showed a selective performance improvement for the modality incompatible mapping but no transfer to the modality compatible dual task. In contrast, the compatible intervention group showed moderately improved performance in both modality map-pings. Still, participants reported increased subjective fatigue and reduced motivation after the fatigue inter-vention. This dynamic interplay of training and fatigue effects suggests that high control demands were involved in the prolonged performance of a modality incompatible dual task, which are separable from modality compatible dual-task demands.}, language = {en} }