@article{NevillNegraMyersetal.2021, author = {Nevill, Alan M. and Negra, Yassine and Myers, Tony D. and Duncan, Michael J. and Chaabene, Helmi and Granacher, Urs}, title = {Are Early or Late Maturers Likely to Be Fitter in the General Population?}, series = {International Journal of Environmental Research and Public Health}, volume = {18}, journal = {International Journal of Environmental Research and Public Health}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {1660-4601}, doi = {10.3390/ijerph18020497}, pages = {16}, year = {2021}, abstract = {The present study aims to identify the optimal body-size/shape and maturity characteristics associated with superior fitness test performances having controlled for body-size, sex, and chronological-age differences. The sample consisted of 597 Tunisian children (396 boys and 201 girls) aged 8 to 15 years. Three sprint speeds recorded at 10, 20 and 30 m; two vertical and two horizontal jump tests; a change-of-direction and a handgrip-strength tests, were assessed during physical-education classes. Allometric modelling was used to identify the benefit of being an early or late maturer. Findings showed that being tall and light is the ideal shape to be successful at most physical fitness tests, but the height-to-weight "shape" ratio seems to be test-dependent. Having controlled for body-size/shape, sex, and chronological age, the model identified maturity-offset as an additional predictor. Boys who go earlier/younger through peak-height-velocity (PHV) outperform those who go at a later/older age. However, most of the girls' physical-fitness tests peaked at the age at PHV and decline thereafter. Girls whose age at PHV was near the middle of the age range would appear to have an advantage compared to early or late maturers. These findings have important implications for talent scouts and coaches wishing to recruit children into their sports/athletic clubs.}, language = {en} } @article{SammoudNegraBouguezzietal.2021, author = {Sammoud, Senda and Negra, Yassine and Bouguezzi, Raja and Hachana, Younes and Granacher, Urs and Chaabene, Helmi}, title = {The effects of plyometric jump training on jump and sport-specific performances in prepubertal female swimmers}, series = {Journal of exercise science and fitness : JESF : official journal of The Society of Chinese Scholars on Exercise Physiology and Fitness and Hong Kong Association of Sports Medicine \& Sports Science}, volume = {19}, journal = {Journal of exercise science and fitness : JESF : official journal of The Society of Chinese Scholars on Exercise Physiology and Fitness and Hong Kong Association of Sports Medicine \& Sports Science}, number = {1}, publisher = {Elsevier}, address = {Singapore}, issn = {1728-869x}, doi = {10.1016/j.jesf.2020.07.003}, pages = {25 -- 31}, year = {2021}, abstract = {Background/objective Dry land-training (e.g., plyometric jump training) can be a useful mean to improve swimming performance. This study examined the effects of an 8-week plyometric jump training (PJT) program on jump and sport-specific performances in prepubertal female swimmers. Methods Twenty-two girls were randomly assigned to either a plyometric jump training group (PJTG; n = 12, age: 10.01 ± 0.57 years, maturity-offset = -1.50 ± 0.50, body mass = 36.39 ± 6.32 kg, body height = 146.90 ± 7.62 cm, body mass index = 16.50 ± 1.73 kg/m2) or an active control (CG; n = 10, age: 10.50 ± 0.28 years, maturity-offset = -1.34 ± 0.51, body mass = 38.41 ± 9.42 kg, body height = 143.60 ± 5.05 cm, body mass index = 18.48 ± 3.77 kg/m2). Pre- and post-training, tests were conducted for the assessment of muscle power (e.g., countermovement-jump [CMJ], standing-long-jump [SLJ]). Sport-specific-performances were tested using the timed 25 and 50-m front crawl with a diving-start, timed 25-m front crawl without push-off from the wall (25-m WP), and a timed 25-m kick without push-off from the wall (25-m KWP). Results Findings showed a significant main effect of time for the CMJ (d = 0.78), the SLJ (d = 0.91), 25-m front crawl test (d = 2.5), and the 25-m-KWP (d = 1.38) test. Significant group × time interactions were found for CMJ, SLJ, 25-m front crawl, 50-m front crawl, 25-m KWP, and 25-m WP test (d = 0.29-1.63) in favor of PJTG (d = 1.34-3.50). No significant pre-post changes were found for CG (p > 0.05). Conclusion In sum, PJT is effective in improving muscle power and sport-specific performances in prepubertal swimmers. Therefore, PJT should be included from an early start into the regular training program of swimmers.}, language = {en} } @misc{NevillNegraMyersetal.2021, author = {Nevill, Alan M. and Negra, Yassine and Myers, Tony D. and Duncan, Michael J. and Chaabene, Helmi and Granacher, Urs}, title = {Are Early or Late Maturers Likely to Be Fitter in the General Population?}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {695}, issn = {1866-8364}, doi = {10.25932/publishup-48992}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489928}, pages = {18}, year = {2021}, abstract = {The present study aims to identify the optimal body-size/shape and maturity characteristics associated with superior fitness test performances having controlled for body-size, sex, and chronological-age differences. The sample consisted of 597 Tunisian children (396 boys and 201 girls) aged 8 to 15 years. Three sprint speeds recorded at 10, 20 and 30 m; two vertical and two horizontal jump tests; a change-of-direction and a handgrip-strength tests, were assessed during physical-education classes. Allometric modelling was used to identify the benefit of being an early or late maturer. Findings showed that being tall and light is the ideal shape to be successful at most physical fitness tests, but the height-to-weight "shape" ratio seems to be test-dependent. Having controlled for body-size/shape, sex, and chronological age, the model identified maturity-offset as an additional predictor. Boys who go earlier/younger through peak-height-velocity (PHV) outperform those who go at a later/older age. However, most of the girls' physical-fitness tests peaked at the age at PHV and decline thereafter. Girls whose age at PHV was near the middle of the age range would appear to have an advantage compared to early or late maturers. These findings have important implications for talent scouts and coaches wishing to recruit children into their sports/athletic clubs.}, language = {en} } @article{ChaabeneNegraMoranetal.2021, author = {Chaabene, Helmi and Negra, Yassine and Moran, Jason and Prieske, Olaf and Sammoud, Senda and Ramirez-Campillo, Rodrigo and Granacher, Urs}, title = {Plyometric training improves not only measures of linear speed, power, and change-of-direction speed but also repeated sprint ability in young female handball players}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {35}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {8}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000003128}, pages = {2230 -- 2235}, year = {2021}, abstract = {This study examined the effects of an 8-week plyometric training (PT) program on components of physical fitness in young female handball players. Twenty-one female adolescent handball players were assigned to an experimental group (EG, n = 12; age = 15.9 +/- 0.2 years) or an active control group (CG, n = 9, age = 15.9 +/- 0.3 years). While EG performed plyometric exercises in replacement of some handball-specific drills, CG maintained the regular training schedule. Baseline and follow-up tests were performed for the assessment of linear speed (i.e., 5-, 10-, and 20-m time), change-of-direction (CoD) speed (i.e., T-test time), muscle power (i.e., countermovement jump [CMJ] height and reactive strength index [RSI]), and repeated sprint ability (RSA) (RSA total time [RSA(total)], RSA best time [RSA(best)], and RSA fatigue index [RSA(FI)]). Data were analyzed using magnitude-based inferences. Within-group analyses for the EG revealed moderate-to-large improvements for the 5-m (effect size [ES] = 0.81 [0.1-1.5]), 10-m sprint time (ES = 0.84 [0.1-1.5]), RSI (ES = 0.75 [0.1-1.4]), RSA(FI) (ES = 0.65 [0.0-1.3]), and T-test time (ES = 1.46 [0.7-2.2]). Trivial-to-small ES was observed for RSA(best) (ES = 0.18 [-0.5 to 0.9]), RSA(total) (ES = 0.45 [-0.2 to 1.1]), 20-m sprint time (ES = 0.56 [-0.1 to 1.2]), and CMJ height (ES = 0.57 [-0.1 to 1.3]). For the CG, within-group analyses showed a moderate performance decline for T-test time (ES = -0.71 [-1.5 to 0.1]), small decreases for 5-m sprint time (ES = -0.46 [-1.2 to 0.3]), and a trivial decline for 10-m (ES = -0.10 [-0.9 to 0.7]) and 20-m sprint times (ES = -0.16 [-0.9 to 0.6]), RSA(total) (ES = 0.0 [-0.8 to 0.8]), and RSA(best) (ES = -0.20 [-0.9 to 0.6]). The control group achieved trivial-to-small improvements for CMJ height (ES = 0.10 [-0.68 to 0.87]) and RSI (ES = 0.30 [-0.5 to 1.1]). In conclusion, a short-term in-season PT program, in replacement of handball-specific drills, is effective in improving measures of physical fitness (i.e., linear/CoD speed, jumping, and RSA) in young female handball players.}, language = {en} } @article{NegraChaabeneSammoudetal.2020, author = {Negra, Yassine and Chaabene, Helmi and Sammoud, Senda and Prieske, Olaf and Moran, Jason and Ramirez-Campillo, Rodrigo and Nejmaoui, Ali and Granacher, Urs}, title = {The increased effectiveness of loaded versus unloaded plyometric jump training in improving muscle power, speed, change of direction, and kicking-distance performance in prepubertal male soccer players}, series = {International journal of sports physiology and performance : IJSSP}, volume = {15}, journal = {International journal of sports physiology and performance : IJSSP}, number = {2}, publisher = {Human Kinetics}, address = {Champaign, Ill.}, issn = {1555-0265}, doi = {10.1123/ijspp.2018-0866}, pages = {189 -- 195}, year = {2020}, abstract = {Purpose: To examine the effects of loaded (LPJT) versus unloaded plyometric jump training (UPJT) programs on measures of muscle power, speed, change of direction (CoD), and kicking-distance performance in prepubertal male soccer players. Methods: Participants (N = 29) were randomly assigned to a LPJT group (n = 13; age = 13.0 [0.7] y) using weighted vests or UPJT group (n = 16; age = 13.0 [0.5] y) using body mass only. Before and after the intervention, tests for the assessment of proxies of muscle power (ie, countermovement jump, standing long jump); speed (ie, 5-, 10-, and 20-m sprint); CoD (ie, Illinois CoD test, modified 505 agility test); and kicking-distance were conducted. Data were analyzed using magnitude-based inferences. Results: Within-group analyses for the LPJT group showed large and very large improvements for 10-m sprint time (effect size [ES] = 2.00) and modified 505 CoD (ES = 2.83) tests, respectively. For the same group, moderate improvements were observed for the Illinois CoD test (ES = 0.61), 5- and 20-m sprint time test (ES = 1.00 for both the tests), countermovement jump test (ES = 1.00), and the maximal kicking-distance test (ES = 0.90). Small enhancements in the standing long jump test (ES = 0.50) were apparent. Regarding the UPJT group, small improvements were observed for all tests (ES = 0.33-0.57), except 5- and 10-m sprint time (ES = 1.00 and 0.63, respectively). Between-group analyses favored the LPJT group for the modified 505 CoD (ES = 0.61), standing long jump (ES = 0.50), and maximal kicking-distance tests (ES = 0.57), but not for the 5-m sprint time test (ES = 1.00). Only trivial between-group differences were shown for the remaining tests (ES = 0.00-0.09). Conclusion: Overall, LPJT appears to be more effective than UPJT in improving measures of muscle power, speed, CoD, and kicking-distance performance in prepubertal male soccer players.}, language = {en} } @article{ChaabenePrieskeMoranetal.2020, author = {Chaabene, Helmi and Prieske, Olaf and Moran, Jason and Negra, Yassine and Attia, Ahmed and Granacher, Urs}, title = {Effects of resistance training on Change-of-Direction speed in youth and young physically active and athletic adults: a systematic review with meta-analysis}, series = {Sports medicine : the world's premier sports medicine preview journal}, volume = {50}, journal = {Sports medicine : the world's premier sports medicine preview journal}, number = {8}, publisher = {Springer}, address = {Berlin [u.a.]}, issn = {0112-1642}, doi = {10.1007/s40279-020-01293-w}, pages = {1483 -- 1499}, year = {2020}, abstract = {Background Change-of-direction (CoD) speed is a physical fitness attribute in many field-based team and individual sports. To date, no systematic review with meta-analysis available has examined the effects of resistance training (RT) on CoD speed in youth and adults. Objective To aggregate the effects of RT on CoD speed in youth and young physically active and athletic adults, and to identify the key RT programme variables for training prescription. Data sources A systematic literature search was conducted with PubMed, Web of Science, and Google Scholar, with no date restrictions, up to October 2019, to identify studies related to the effects of RT on CoD speed. Study Eligibility Criteria Only controlled studies with baseline and follow-up measures were included if they examined the effects of RT (i.e., muscle actions against external resistances) on CoD speed in healthy youth (8-18 years) and young physically active/athletic male or female adults (19-28 years). Study Appraisal and Synthesis Methods A random-effects model was used to calculate weighted standardised mean differences (SMD) between intervention and control groups. In addition, an independent single training factor analysis (i.e., RT frequency, intensity, volume) was undertaken. Further, to verify if any RT variable moderated effects on CoD speed, a multivariate random-effects meta-regression was conducted. The methodological quality of the included studies was assessed using the physiotherapy evidence database (PEDro) scale. Results Fifteen studies, comprising 19 experimental groups, were included. The methodological quality of the studies was acceptable with a median PEDro score of 6. There was a significant large effect size of RT on CoD speed across all studies (SMD = - 0.82 [- 1.14 to - 0.49]). Subgroup analyses showed large effect sizes on CoD speed in males (SMD = - 0.95) contrasting with moderate improvements in females (SMD = - 0.60). There were large effect sizes on CoD speed in children (SMD = - 1.28) and adolescents (SMD = - 1.21) contrasting with moderate effects in adults (SMD = - 0.63). There was a moderate effect in elite athletes (SMD = - 0.69) contrasting with a large effect in subelite athletes (SMD = - 0.86). Differences between subgroups were not statistically significant. Similar improvements were observed regarding the effects of independently computed training variables. In terms of RT frequency, our results indicated that two sessions per week induced large effects on CoD speed (SMD = - 1.07) while programmes with three sessions resulted in moderate effects (SMD = - 0.53). For total training intervention duration, we observed large effects for <= 8 weeks (SMD = - 0.81) and > 8 weeks (SMD = - 0.85). For single session duration, we found large effects for <= 30 min and >= 45 min (both SMD = - 1.00). In terms of number of training sessions, we identified large effects for <= 16 sessions (SMD = - 0.83) and > 16 sessions (SMD = - 0.81). For training intensity, we found moderate effects for light-to-moderate (SMD = - 0.76) and vigorous-to-near maximal intensities (SMD = - 0.77). With regards to RT type, we observed large effects for free weights (SMD = - 0.99) and machine-based training (SMD = - 0.80). For combined free weights and machine-based training, moderate effects were identified (SMD = - 0.77). The meta-regression outcomes showed that none of the included training variables significantly predicted the effects of RT on CoD speed (R-2 = 0.00). Conclusions RT seems to be an effective means to improve CoD speed in youth and young physically active and athletic adults. Our findings indicate that the impact of RT on CoD speed may be more prominent in males than in females and in youth than in adults. Additionally, independently computed single factor analyses for different training variables showed that higher compared with lower RT intensities, frequencies, and volumes appear not to have an advantage on the magnitude of CoD speed improvements. In terms of RT type, similar improvements were observed following machine-based and free weights training.}, language = {en} } @article{NegraChaabeneFernandezFernandezetal.2020, author = {Negra, Yassine and Chaabene, Helmi and Fernandez-Fernandez, Jaime and Sammoud, Senda and Bouguezzi, Raja and Prieske, Olaf and Granacher, Urs}, title = {Short-term plyometric Jump training improves repeated-sprint ability in prepuberal male soccer players}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {34}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {11}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000002703}, pages = {3241 -- 3249}, year = {2020}, abstract = {This study examined the effects of a short-term (i.e., 8 weeks) combined horizontal and vertical plyometric jump training (PJT) program in combination with regular soccer-specific training as compared with soccer-specific training only on jump and change of direction (CoD) performances, speed, and repeated-sprint ability (RSA) in prepuberal male soccer players. Twenty-four players were recruited and randomly assigned to either a PJT group (PJT(G); n = 13; 12.7 +/- 0.2 years) or an active control group (CONG; n = 11; 12.7 +/- 0.2 years). The outcome measures included tests for the assessment of jump performance (drop jump from 20- to 40-cm height [DJ20 and DJ40] and 3-hop test [THT]), speed (20-m sprint), CoD (T-test), and RSA (20-m repeated shuttle sprint). Data were analyzed using magnitude-based inferences. Within-group analyses revealed large performance improvements in the T-test (d = -1.2), DJ20 (d = 3.7), DJ40 (d = 3.6), THT (d = 0.6), and the RSA(total) (d = -1.6) in the PJT(G). Between-group analyses showed greater performance improvements in the T-test (d = -2.9), 20-m sprint time (d = -2.0), DJ20 (d = 2.4), DJ40 (d = 2.0), THT (d = 1.9), RSA(best) (d = -1.9), and the RSA(total) (d = -1.9) in the PJT(G) compared with CONG. Eight weeks of an in-season PJT in addition to regular soccer-specific training induced larger increases in measures of physical fitness in prepuberal male soccer players compared with regular soccer-specific training only. More specifically, PJT was effective in improving RSA performance.}, language = {en} } @misc{SammoudNegraBouguezzietal.2020, author = {Sammoud, Senda and Negra, Yassine and Bouguezzi, Raja and Hachana, Younes and Granacher, Urs and Chaabene, Helmi}, title = {The effects of plyometric jump training on jump and sport-specific performances in prepubertal female swimmers}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {658}, issn = {1866-8364}, doi = {10.25932/publishup-47827}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-478272}, pages = {9}, year = {2020}, abstract = {Background/objective Dry land-training (e.g., plyometric jump training) can be a useful mean to improve swimming performance. This study examined the effects of an 8-week plyometric jump training (PJT) program on jump and sport-specific performances in prepubertal female swimmers. Methods Twenty-two girls were randomly assigned to either a plyometric jump training group (PJTG; n = 12, age: 10.01 ± 0.57 years, maturity-offset = -1.50 ± 0.50, body mass = 36.39 ± 6.32 kg, body height = 146.90 ± 7.62 cm, body mass index = 16.50 ± 1.73 kg/m2) or an active control (CG; n = 10, age: 10.50 ± 0.28 years, maturity-offset = -1.34 ± 0.51, body mass = 38.41 ± 9.42 kg, body height = 143.60 ± 5.05 cm, body mass index = 18.48 ± 3.77 kg/m2). Pre- and post-training, tests were conducted for the assessment of muscle power (e.g., countermovement-jump [CMJ], standing-long-jump [SLJ]). Sport-specific-performances were tested using the timed 25 and 50-m front crawl with a diving-start, timed 25-m front crawl without push-off from the wall (25-m WP), and a timed 25-m kick without push-off from the wall (25-m KWP). Results Findings showed a significant main effect of time for the CMJ (d = 0.78), the SLJ (d = 0.91), 25-m front crawl test (d = 2.5), and the 25-m-KWP (d = 1.38) test. Significant group × time interactions were found for CMJ, SLJ, 25-m front crawl, 50-m front crawl, 25-m KWP, and 25-m WP test (d = 0.29-1.63) in favor of PJTG (d = 1.34-3.50). No significant pre-post changes were found for CG (p > 0.05). Conclusion In sum, PJT is effective in improving muscle power and sport-specific performances in prepubertal swimmers. Therefore, PJT should be included from an early start into the regular training program of swimmers.}, language = {en} } @article{ChaabeneBehmNegraetal.2019, author = {Chaabene, Helmi and Behm, David George and Negra, Yassine and Granacher, Urs}, title = {Acute Effects of Static Stretching on Muscle Strength and Power}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.01468}, pages = {8}, year = {2019}, abstract = {The effects of static stretching (StS) on subsequent strength and power activities has been one of the most debated topics in sport science literature over the past decades. The aim of this review is (1) to summarize previous and current findings on the acute effects of StS on muscle strength and power performances; (2) to update readers' knowledge related to previous caveats; and (3) to discuss the underlying physiological mechanisms of short-duration StS when performed as single-mode treatment or when integrated into a full warm-up routine. Over the last two decades, StS has been considered harmful to subsequent strength and power performances. Accordingly, it has been recommended not to apply StS before strength- and power-related activities. More recent evidence suggests that when performed as a single-mode treatment or when integrated within a full warm-up routine including aerobic activity, dynamic-stretching, and sport-specific activities, short-duration StS (≤60 s per muscle group) trivially impairs subsequent strength and power activities (∆1-2\%). Yet, longer StS durations (>60 s per muscle group) appear to induce substantial and practically relevant declines in strength and power performances (∆4.0-7.5\%). Moreover, recent evidence suggests that when included in a full warm-up routine, short-duration StS may even contribute to lower the risk of sustaining musculotendinous injuries especially with high-intensity activities (e.g., sprint running and change of direction speed). It seems that during short-duration StS, neuromuscular activation and musculotendinous stiffness appear not to be affected compared with long-duration StS. Among other factors, this could be due to an elevated muscle temperature induced by a dynamic warm-up program. More specifically, elevated muscle temperature leads to increased muscle fiber conduction-velocity and improved binding of contractile proteins (actin, myosin). Therefore, our previous understanding of harmful StS effects on subsequent strength and power activities has to be updated. In fact, short-duration StS should be included as an important warm-up component before the uptake of recreational sports activities due to its potential positive effect on flexibility and musculotendinous injury prevention. However, in high-performance athletes, short-duration StS has to be applied with caution due to its negligible but still prevalent negative effects on subsequent strength and power performances, which could have an impact on performance during competition.}, language = {en} } @misc{ChaabeneBehmNegraetal.2019, author = {Chaabene, Helmi and Behm, David George and Negra, Yassine and Granacher, Urs}, title = {Acute Effects of Static Stretching on Muscle Strength and Power}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {585}, issn = {1866-8364}, doi = {10.25932/publishup-44003}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-440036}, pages = {8}, year = {2019}, abstract = {The effects of static stretching (StS) on subsequent strength and power activities has been one of the most debated topics in sport science literature over the past decades. The aim of this review is (1) to summarize previous and current findings on the acute effects of StS on muscle strength and power performances; (2) to update readers' knowledge related to previous caveats; and (3) to discuss the underlying physiological mechanisms of short-duration StS when performed as single-mode treatment or when integrated into a full warm-up routine. Over the last two decades, StS has been considered harmful to subsequent strength and power performances. Accordingly, it has been recommended not to apply StS before strength- and power-related activities. More recent evidence suggests that when performed as a single-mode treatment or when integrated within a full warm-up routine including aerobic activity, dynamic-stretching, and sport-specific activities, short-duration StS (≤60 s per muscle group) trivially impairs subsequent strength and power activities (∆1-2\%). Yet, longer StS durations (>60 s per muscle group) appear to induce substantial and practically relevant declines in strength and power performances (∆4.0-7.5\%). Moreover, recent evidence suggests that when included in a full warm-up routine, short-duration StS may even contribute to lower the risk of sustaining musculotendinous injuries especially with high-intensity activities (e.g., sprint running and change of direction speed). It seems that during short-duration StS, neuromuscular activation and musculotendinous stiffness appear not to be affected compared with long-duration StS. Among other factors, this could be due to an elevated muscle temperature induced by a dynamic warm-up program. More specifically, elevated muscle temperature leads to increased muscle fiber conduction-velocity and improved binding of contractile proteins (actin, myosin). Therefore, our previous understanding of harmful StS effects on subsequent strength and power activities has to be updated. In fact, short-duration StS should be included as an important warm-up component before the uptake of recreational sports activities due to its potential positive effect on flexibility and musculotendinous injury prevention. However, in high-performance athletes, short-duration StS has to be applied with caution due to its negligible but still prevalent negative effects on subsequent strength and power performances, which could have an impact on performance during competition.}, language = {en} }