@article{TianHerzschuhMischkeetal.2014, author = {Tian, Fang and Herzschuh, Ulrike and Mischke, Steffen and Schluetz, Frank}, title = {What drives the recent intensified vegetation degradation in Mongolia - Climate change or human activity?}, series = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, volume = {24}, journal = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, number = {10}, publisher = {Sage Publ.}, address = {London}, issn = {0959-6836}, doi = {10.1177/0959683614540958}, pages = {1206 -- 1215}, year = {2014}, abstract = {This study examines the course and driving forces of recent vegetation change in the Mongolian steppe. A sediment core covering the last 55years from a small closed-basin lake in central Mongolia was analyzed for its multi-proxy record at annual resolution. Pollen analysis shows that highest abundances of planted Poaceae and highest vegetation diversity occurred during 1977-1992, reflecting agricultural development in the lake area. A decrease in diversity and an increase in Artemisia abundance after 1992 indicate enhanced vegetation degradation in recent times, most probably because of overgrazing and farmland abandonment. Human impact is the main factor for the vegetation degradation within the past decades as revealed by a series of redundancy analyses, while climate change and soil erosion play subordinate roles. High Pediastrum (a green algae) influx, high atomic total organic carbon/total nitrogen (TOC/TN) ratios, abundant coarse detrital grains, and the decrease of C-13(org) and N-15 since about 1977 but particularly after 1992 indicate that abundant terrestrial organic matter and nutrients were transported into the lake and caused lake eutrophication, presumably because of intensified land use. Thus, we infer that the transition to a market economy in Mongolia since the early 1990s not only caused dramatic vegetation degradation but also affected the lake ecosystem through anthropogenic changes in the catchment area.}, language = {en} } @article{DunkerBoydDurkaetal.2022, author = {Dunker, Susanne and Boyd, Matthew and Durka, Walter and Erler, Silvio and Harpole, W. Stanley and Henning, Silvia and Herzschuh, Ulrike and Hornick, Thomas and Knight, Tiffany and Lips, Stefan and M{\"a}der, Patrick and Švara, Elena Motivans and Mozarowski, Steven and Rakosy, Demetra and R{\"o}mermann, Christine and Schmitt-Jansen, Mechthild and Stoof-Leichsenring, Kathleen and Stratmann, Frank and Treudler, Regina and Virtanen, Risto and Wendt-Potthoff, Katrin and Wilhelm, Christian}, title = {The potential of multispectral imaging flow cytometry for environmental monitoring}, series = {Cytometry part A}, volume = {101}, journal = {Cytometry part A}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {1552-4922}, doi = {10.1002/cyto.a.24658}, pages = {782 -- 799}, year = {2022}, abstract = {Environmental monitoring involves the quantification of microscopic cells and particles such as algae, plant cells, pollen, or fungal spores. Traditional methods using conventional microscopy require expert knowledge, are time-intensive and not well-suited for automated high throughput. Multispectral imaging flow cytometry (MIFC) allows measurement of up to 5000 particles per second from a fluid suspension and can simultaneously capture up to 12 images of every single particle for brightfield and different spectral ranges, with up to 60x magnification. The high throughput of MIFC has high potential for increasing the amount and accuracy of environmental monitoring, such as for plant-pollinator interactions, fossil samples, air, water or food quality that currently rely on manual microscopic methods. Automated recognition of particles and cells is also possible, when MIFC is combined with deep-learning computational techniques. Furthermore, various fluorescence dyes can be used to stain specific parts of the cell to highlight physiological and chemical features including: vitality of pollen or algae, allergen content of individual pollen, surface chemical composition (carbohydrate coating) of cells, DNA- or enzyme-activity staining. Here, we outline the great potential for MIFC in environmental research for a variety of research fields and focal organisms. In addition, we provide best practice recommendations.}, language = {en} } @article{VogelClausAhringetal.2022, author = {Vogel, Annemarie and Claus, Inga and Ahring, Sigrid and Gruber, Doreen and Haghikia, Aiden and Frank, Ulrike and Dziewas, Rainer and Ebersbach, Georg and Gandor, Florin and Warnecke, Tobias}, title = {Endoscopic characteristics of dysphagia in multiple system atrophy}, series = {Movement disorders : official journal of the Movement Disorder Society}, volume = {37}, journal = {Movement disorders : official journal of the Movement Disorder Society}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0885-3185}, doi = {10.1002/mds.28854}, pages = {535 -- 544}, year = {2022}, abstract = {Background Dysphagia is a major clinical concern in multiple system atrophy (MSA). A detailed evaluation of its major endoscopic features compared with Parkinson's disease (PD) is lacking. Objective This study systematically assessed dysphagia in MSA compared with PD and correlated subjective dysphagia to objective endoscopic findings. Methods Fifty-seven patients with MSA (median, 64 [interquartile range (IQR): 59-71] years; 35 women) underwent flexible endoscopic evaluation of swallowing using a specific MSA-flexible endoscopic evaluation of swallowing task protocol. Findings were compared with an age-matched cohort of 57 patients with PD (median, 67 [interquartile range: 60-73] years; 28 women). In a subcohort, subjective dysphagia was assessed using the Swallowing Disturbance Questionnaire and correlated to endoscopy findings. Results Patients with MSA predominantly showed symptoms suggestive of oral-phase disturbance (premature spillage, 75.4\%, piecemeal deglutition, 75.4\%). Pharyngeal-phase symptoms occurred less often (pharyngeal residues, 50.9\%; penetration/aspiration, 28.1\%). In contrast, pharyngeal symptoms were the most common finding in PD (pharyngeal residues, 47.4\%). Oral symptoms occurred less frequently in PD (premature spillage, 15.8\%, P < 0.001; piecemeal deglutition, 1.8\%, P < 0.01). Patients with MSA had a greater risk for oral-phase disturbances with increased disease severity (P < 0.05; odds ratio, 3.15). Patients with MSA showed a significantly higher intraindividual interswallow variability compared with PD. When correlating Swallowing Disturbance Questionnaire scores with endoscopy results, its cutoff, validated for PD, was not sensitive enough to identify patients with MSA with dysphagia. We developed a subscore for identifying dysphagia in MSA and calculated a new cutoff (sensitivity 85\%, specificity 100\%). Conclusions In contrast with patients with PD, patients with dysphagic MSA more frequently present with oral-phase symptoms and a significantly higher intraindividual interswallow variability. A novel Swallowing Disturbance Questionnaire MSA subscore may be a valuable tool to identify patients with MSA with early oropharyngeal dysphagia.}, language = {en} }