@article{TuckerBoehningGaeseFaganetal.2018, author = {Tucker, Marlee A. and Boehning-Gaese, Katrin and Fagan, William F. and Fryxell, John M. and Van Moorter, Bram and Alberts, Susan C. and Ali, Abdullahi H. and Allen, Andrew M. and Attias, Nina and Avgar, Tal and Bartlam-Brooks, Hattie and Bayarbaatar, Buuveibaatar and Belant, Jerrold L. and Bertassoni, Alessandra and Beyer, Dean and Bidner, Laura and van Beest, Floris M. and Blake, Stephen and Blaum, Niels and Bracis, Chloe and Brown, Danielle and de Bruyn, P. J. Nico and Cagnacci, Francesca and Calabrese, Justin M. and Camilo-Alves, Constanca and Chamaille-Jammes, Simon and Chiaradia, Andre and Davidson, Sarah C. and Dennis, Todd and DeStefano, Stephen and Diefenbach, Duane and Douglas-Hamilton, Iain and Fennessy, Julian and Fichtel, Claudia and Fiedler, Wolfgang and Fischer, Christina and Fischhoff, Ilya and Fleming, Christen H. and Ford, Adam T. and Fritz, Susanne A. and Gehr, Benedikt and Goheen, Jacob R. and Gurarie, Eliezer and Hebblewhite, Mark and Heurich, Marco and Hewison, A. J. Mark and Hof, Christian and Hurme, Edward and Isbell, Lynne A. and Janssen, Rene and Jeltsch, Florian and Kaczensky, Petra and Kane, Adam and Kappeler, Peter M. and Kauffman, Matthew and Kays, Roland and Kimuyu, Duncan and Koch, Flavia and Kranstauber, Bart and LaPoint, Scott and Leimgruber, Peter and Linnell, John D. C. and Lopez-Lopez, Pascual and Markham, A. Catherine and Mattisson, Jenny and Medici, Emilia Patricia and Mellone, Ugo and Merrill, Evelyn and Mourao, Guilherme de Miranda and Morato, Ronaldo G. and Morellet, Nicolas and Morrison, Thomas A. and Diaz-Munoz, Samuel L. and Mysterud, Atle and Nandintsetseg, Dejid and Nathan, Ran and Niamir, Aidin and Odden, John and Oliveira-Santos, Luiz Gustavo R. and Olson, Kirk A. and Patterson, Bruce D. and de Paula, Rogerio Cunha and Pedrotti, Luca and Reineking, Bjorn and Rimmler, Martin and Rogers, Tracey L. and Rolandsen, Christer Moe and Rosenberry, Christopher S. and Rubenstein, Daniel I. and Safi, Kamran and Said, Sonia and Sapir, Nir and Sawyer, Hall and Schmidt, Niels Martin and Selva, Nuria and Sergiel, Agnieszka and Shiilegdamba, Enkhtuvshin and Silva, Joao Paulo and Singh, Navinder and Solberg, Erling J. and Spiegel, Orr and Strand, Olav and Sundaresan, Siva and Ullmann, Wiebke and Voigt, Ulrich and Wall, Jake and Wattles, David and Wikelski, Martin and Wilmers, Christopher C. and Wilson, John W. and Wittemyer, George and Zieba, Filip and Zwijacz-Kozica, Tomasz and Mueller, Thomas}, title = {Moving in the Anthropocene}, series = {Science}, volume = {359}, journal = {Science}, number = {6374}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aam9712}, pages = {466 -- 469}, year = {2018}, abstract = {Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.}, language = {en} } @article{KieferKrahlOsthoffetal.2017, author = {Kiefer, Thomas and Krahl, Dorothea and Osthoff, Kathrin and Thuss-Patience, Peter and Bunse, J{\"o}rg and Adam, Ulrich and Jansen, Marc H. and Ott, Rudolf and Pfitzmann, Robert and Pross, Matthias and Kohlmann, Thomas and Daeschlein, Georg and Buhlert, Hermann and V{\"o}ller, Heinz and Hirt, Carsten}, title = {Importance of Pancreatic Enzyme Replacement Therapy after Surgery of Cancer of the Esophagus or the Esophagogastric Junction}, series = {Nutrition and cancer : an international journal}, volume = {70}, journal = {Nutrition and cancer : an international journal}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0163-5581}, doi = {10.1080/01635581.2017.1374419}, pages = {69 -- 72}, year = {2017}, abstract = {After surgical treatment of cancer of the esophagus or the esophagogastric junction we observed steatorrhea, which is so far seldom reported. We analyzed all patients treated in our rehabilitation clinic between 2011 and 2014 and focused on the impact of surgery on digestion of fat. Reported steatorrhea was anamnestic, no pancreatic function test was made. Here we show the results from 51 patients. Twenty-three (45\%) of the patients reported steatorrhea. Assuming decreased pancreatic function pancreatic enzyme replacement therapy (PERT) was started or modified during the rehabilitation stay (in the following called STEA(+)). These patients were compared with the patients without steatorrhea and without PERT (STEA(-)). Maximum weight loss between surgery and rehabilitation start was 18 kg in STEA(+) patient and 15.3 kg in STEA(-) patients. STEA(+) patients gained more weight under PERT during the rehabilitation phase (3 wk) than STEA(-) patients without PERT (+1.0 kg vs. -0.3 kg, P = 0.032). We report for the first time, that patients after cancer related esophageal surgery show anamnestic signs of exocrine pancreas insufficiency and need PERT to gain body weight.}, language = {en} } @article{HillwigReindlRotteretal.2022, author = {Hillwig, Todd C. and Reindl, Nicole and Rotter, Hannah M. and Rengstorf, Adam W. and Heber, Ulrich and Irrgang, Andreas}, title = {Two evolved close binary stars: GALEX J015054.4+310745 and the central star of the planetary nebula Hen 2-84}, series = {Monthly notices of the Royal Astronomical Society}, volume = {511}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac226}, pages = {2033 -- 2039}, year = {2022}, abstract = {As part of a survey to find close binary systems among central stars of planetary nebula, we present two newly discovered binary systems. GALEX J015054.4+310745 is identified as the central star of the possible planetary nebula Fr 2-22. We find it to be a single-lined spectroscopic binary with an orbital period of 0.2554435(10) d. We support the previous identification of GALEX J015054.4+310745 as an sdB star and provide physical parameters for the star from spectral modelling. We identify its undetected companion as a likely He white dwarf. Based on this information, we find it unlikely that Fr 2-22 is a true planetary nebula. In addition, the central star of the true planetary nebula Hen 2-84 is found to be a photometric variable, likely due to the irradiation of a cool companion. The system has an orbital period of 0.485645(30) d. We discuss limits on binary parameters based on the available light-curve data. Hen 2-84 is a strongly shaped bipolar planetary nebula, which we now add to the growing list of axially or point-symmetric planetary nebulae with a close binary central star.}, language = {en} } @article{KottmeierAgnonAlHalbounietal.2016, author = {Kottmeier, Christoph and Agnon, Amotz and Al-Halbouni, Djamil and Alpert, Pinhas and Corsmeier, Ulrich and Dahm, Torsten and Eshel, Adam and Geyer, Stefan and Haas, Michael and Holohan, Eoghan and Kalthoff, Norbert and Kishcha, Pavel and Krawczyk, Charlotte and Lati, Joseph and Laronne, Jonathan B. and Lott, Friederike and Mallast, Ulf and Merz, Ralf and Metzger, Jutta and Mohsen, Ayman and Morin, Efrat and Nied, Manuela and Roediger, Tino and Salameh, Elias and Sawarieh, Ali and Shannak, Benbella and Siebert, Christian and Weber, Michael}, title = {New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {544}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2015.12.003}, pages = {1045 -- 1058}, year = {2016}, abstract = {The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, similar to 1 m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required. The research project DESERVE (Helmholtz Virtual Institute Dead Sea Research Venue) addresses these challenges in an interdisciplinary approach that includes geophysics, hydrology, and meteorology. The project is implemented by a consortium of scientific institutions in neighboring countries of the Dead Sea (Israel, Jordan, Palestine Territories) and participating German Helmholtz Centres (KIT, GFZ, UFZ). A new monitoring network of meteorological, hydrological, and seismic/geodynamic stations has been established, and extensive field research and numerical simulations have been undertaken. For the first time, innovative measurement and modeling techniques have been applied to the extreme conditions of the Dead Sea and its surroundings. The preliminary results show the potential of these methods. First time ever performed eddy covariance measurements give insight into the governing factors of Dead Sea evaporation. High-resolution bathymetric investigations reveal a strong correlation between submarine springs and neo-tectonic patterns. Based on detailed studies of stratigraphy and borehole information, the extension of the subsurface drainage basin of the Dead Sea is now reliably estimated. Originality has been achieved in monitoring flash floods in an arid basin at its outlet and simultaneously in tributaries, supplemented by spatio-temporal rainfall data. Low-altitude, high resolution photogrammetry, allied to satellite image analysis and to geophysical surveys (e.g. shear-wave reflections) has enabled a more detailed characterization of sinkhole morphology and temporal development and the possible subsurface controls thereon. All the above listed efforts and scientific results take place with the interdisciplinary education of young scientists. They are invited to attend joint thematic workshops and winter schools as well as to participate in field experiments. (C) 2015 The Authors. Published by Elsevier B.V.}, language = {en} }