@article{CescaHeimannKriegerowskietal.2017, author = {Cesca, Simone and Heimann, Sebastian and Kriegerowski, Marius and Saul, Joachim and Dahm, Torsten}, title = {Moment tensor inversion for nuclear explosions}, series = {Seismological research letters}, volume = {88}, journal = {Seismological research letters}, number = {2A}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0895-0695}, doi = {10.1785/0220160139}, pages = {300 -- 310}, year = {2017}, abstract = {Two nuclear explosions were carried out by the Democratic People's Republic of North Korea in January and September 2016. Epicenters were located close to those of the 2006, 2009, and 2013 previous explosions. We perform a seismological analysis of the 2016 events combining the analysis of full waveforms at regional distances and seismic array beams at teleseismic distances. We estimate the most relevant source parameters, such as source depth, moment release, and full moment tensor (MT). The best MT solution can be decomposed into an isotropic source, directly related with the explosion and an additional deviatoric term, likely due to near-source interactions with topographic and/or underground facilities features. We additionally perform an accurate resolution test to assess source parameters uncertainties and trade-offs. This analysis sheds light on source parameters inconsistencies among studies on previous shallow explosive sources. The resolution of the true MT is hindered by strong source parameters trade-offs, so that a broad range of well-fitting MT solutions can be found, spanning from a dominant positive isotropic term to a dominant negative vertical compensated linear vector dipole. The true mechanism can be discriminated by additionally modeling first-motion polarities at seismic arrays at teleseismic distances. A comparative assessment of the 2016 explosion with earlier nuclear tests documents similar vertical waveforms but a significant increase of amplitude for the 2016 explosions, which proves that the 9 September 2016 was the largest nuclear explosion ever performed in North Korea with a magnitude Mw 4.9 and a shallow depth of less than 2 km, although there are no proofs of a fusion explosion. Modeling transversal component waveforms suggests variable size and orientation of the double-couple components of the 2009, 2013, and 2016 sources.}, language = {en} } @article{NooshiriSaulHeimannetal.2017, author = {Nooshiri, Nima and Saul, Joachim and Heimann, Sebastian and Tilmann, Frederik and Dahm, Torsten}, title = {Revision of earthquake hypocentre locations in global bulletin data sets using source-specific station terms}, series = {Geophysical journal international}, volume = {208}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggw405}, pages = {589 -- 602}, year = {2017}, abstract = {Global earthquake locations are often associated with very large systematic travel-time residuals even for clear arrivals, especially for regional and near-regional stations in subduction zones because of their strongly heterogeneous velocity structure. Travel-time corrections can drastically reduce travel-time residuals at regional stations and, in consequence, improve the relative location accuracy. We have extended the shrinking-box source-specific station terms technique to regional and teleseismic distances and adopted the algorithm for probabilistic, nonlinear, global-search location. We evaluated the potential of the method to compute precise relative hypocentre locations on a global scale. The method has been applied to two specific test regions using existing P- and pP-phase picks. The first data set consists of 3103 events along the Chilean margin and the second one comprises 1680 earthquakes in the Tonga-Fiji subduction zone. Pick data were obtained from the GEOFON earthquake bulletin, produced using data from all available, global station networks. A set of timing corrections varying as a function of source position was calculated for each seismic station. In this way, we could correct the systematic errors introduced into the locations by the inaccuracies in the assumed velocity structure without explicitly solving for a velocity model. Residual statistics show that the median absolute deviation of the travel-time residuals is reduced by 40-60 per cent at regional distances, where the velocity anomalies are strong. Moreover, the spread of the travel-time residuals decreased by similar to 20 per cent at teleseismic distances (>28 degrees). Furthermore, strong variations in initial residuals as a function of recording distance are smoothed out in the final residuals. The relocated catalogues exhibit less scattered locations in depth and sharper images of the seismicity associated with the subducting slabs. Comparison with a high-resolution local catalogue reveals that our relocation process significantly improves the hypocentre locations compared to standard locations.}, language = {en} } @article{HannemannKruegerDahmetal.2017, author = {Hannemann, Katrin and Kr{\"u}ger, Frank and Dahm, Torsten and Lange, Dietrich}, title = {Structure of the oceanic lithosphere and upper mantle north of the Gloria Fault in the eastern mid-Atlantic by receiver function analysis}, series = {Journal of geophysical research : Solid earth}, volume = {122}, journal = {Journal of geophysical research : Solid earth}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2016JB013582}, pages = {7927 -- 7950}, year = {2017}, abstract = {Receiver functions (RF) have been used for several decades to study structures beneath seismic stations. Although most available stations are deployed on shore, the number of ocean bottom station (OBS) experiments has increased in recent years. Almost all OBSs have to deal with higher noise levels and a limited deployment time (approximate to 1year), resulting in a small number of usable records of teleseismic earthquakes. Here we use OBSs deployed as midaperture array in the deep ocean (4.5-5.5km water depth) of the eastern mid-Atlantic. We use evaluation criteria for OBS data and beamforming to enhance the quality of the RFs. Although some stations show reverberations caused by sedimentary cover, we are able to identify the Moho signal, indicating a normal thickness (5-8km) of oceanic crust. Observations at single stations with thin sediments (300-400m) indicate that a probable sharp lithosphere-asthenosphere boundary (LAB) might exist at a depth of approximate to 70-80km which is in line with LAB depth estimates for similar lithospheric ages in the Pacific. The mantle discontinuities at approximate to 410km and approximate to 660km are clearly identifiable. Their delay times are in agreement with PREM. Overall the usage of beam-formed earthquake recordings for OBS RF analysis is an excellent way to increase the signal quality and the number of usable events.}, language = {en} } @article{ZangStephanssonStenbergetal.2017, author = {Zang, Arno and Stephansson, Ove and Stenberg, Leif and Plenkers, Katrin and von Specht, Sebastian and Milkereit, Claus and Schill, Eva and Kwiatek, Grzegorz and Dresen, Georg and Zimmermann, G{\"u}nter and Dahm, Torsten and Weber, Michael}, title = {Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array}, series = {Geophysical journal international}, volume = {208}, journal = {Geophysical journal international}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, pages = {790 -- 813}, year = {2017}, abstract = {In this paper, an underground experiment at the Aspo Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Aspo HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Avro granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with frequent phases of depressurization.}, language = {en} }