@misc{AlHalbouniHolohanTaherietal.2018, author = {Al-Halbouni, Djamil and Holohan, Eoghan P. and Taheri, Abbas and Sch{\"o}pfer, Martin P. J. and Emam, Sacha and Dahm, Torsten}, title = {Geomechanical modelling of sinkhole development using distinct elements}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1061}, issn = {1866-8372}, doi = {10.25932/publishup-46843}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468435}, pages = {35}, year = {2018}, abstract = {Mechanical and/or chemical removal of material from the subsurface may generate large subsurface cavities, the destabilisation of which can lead to ground collapse and the formation of sinkholes. Numerical simulation of the interaction of cavity growth, host material deformation and overburden collapse is desirable to better understand the sinkhole hazard but is a challenging task due to the involved high strains and material discontinuities. Here, we present 2-D distinct element method numerical simulations of cavity growth and sinkhole development. Firstly, we simulate cavity formation by quasi-static, stepwise removal of material in a single growing zone of an arbitrary geometry and depth. We benchmark this approach against analytical and boundary element method models of a deep void space in a linear elastic material. Secondly, we explore the effects of properties of different uniform materials on cavity stability and sinkhole development. We perform simulated biaxial tests to calibrate macroscopic geotechnical parameters of three model materials representative of those in which sinkholes develop at the Dead Sea shoreline: mud, alluvium and salt. We show that weak materials do not support large cavities, leading to gradual sagging or suffusion-style subsidence. Strong materials support quasi-stable to stable cavities, the overburdens of which may fail suddenly in a caprock or bedrock collapse style. Thirdly, we examine the consequences of layered arrangements of weak and strong materials. We find that these are more susceptible to sinkhole collapse than uniform materials not only due to a lower integrated strength of the overburden but also due to an inhibition of stabilising stress arching. Finally, we compare our model sinkhole geometries to observations at the Ghor Al-Haditha sinkhole site in Jordan. Sinkhole depth ∕ diameter ratios of 0.15 in mud, 0.37 in alluvium and 0.33 in salt are reproduced successfully in the calibrated model materials. The model results suggest that the observed distribution of sinkhole depth ∕ diameter values in each material type may partly reflect sinkhole growth trends.}, language = {en} } @misc{PolomAlrshdanAlHalbounietal.2018, author = {Polom, Ulrich and Alrshdan, Hussam and Al-Halbouni, Djamil and Holohan, Eoghan P. and Dahm, Torsten and Sawarieh, Ali and Atallah, Mohamad Y. and Krawczyk, Charlotte M.}, title = {Shear wave reflection seismic yields subsurface dissolution and subrosion patterns}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {979}, issn = {1866-8372}, doi = {10.25932/publishup-45913}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459134}, pages = {1079 -- 1098}, year = {2018}, abstract = {Near-surface geophysical imaging of alluvial fan settings is a challenging task but crucial for understating geological processes in such settings. The alluvial fan of Ghor Al-Haditha at the southeast shore of the Dead Sea is strongly affected by localized subsidence and destructive sinkhole collapses, with a significantly increasing sinkhole formation rate since ca. 1983. A similar increase is observed also on the western shore of the Dead Sea, in correlation with an ongoing decline in the Dead Sea level. Since different structural models of the upper 50 m of the alluvial fan and varying hypothetical sinkhole processes have been suggested for the Ghor Al-Haditha area in the past, this study aimed to clarify the subsurface characteristics responsible for sinkhole development. For this purpose, high-frequency shear wave reflection vibratory seismic surveys were carried out in the Ghor Al-Haditha area along several crossing and parallel profiles with a total length of 1.8 and 2.1 km in 2013 and 2014, respectively. The sedimentary architecture of the alluvial fan at Ghor Al-Haditha is resolved down to a depth of nearly 200 m at a high resolution and is calibrated with the stratigraphic profiles of two boreholes located inside the survey area. The most surprising result of the survey is the absence of evidence of a thick (> 2-10 m) compacted salt layer formerly suggested to lie at ca. 35-40 m depth. Instead, seismic reflection amplitudes and velocities image with good continuity a complex interlocking of alluvial fan deposits and lacustrine sediments of the Dead Sea between 0 and 200 m depth. Furthermore, the underground section of areas affected by sinkholes is characterized by highly scattering wave fields and reduced seismic interval velocities. We propose that the Dead Sea mud layers, which comprise distributed inclusions or lenses of evaporitic chloride, sulfate, and carbonate minerals as well as clay silicates, become increasingly exposed to unsaturated water as the sea level declines and are consequently destabilized and mobilized by both dissolution and physical erosion in the subsurface. This new interpretation of the underlying cause of sinkhole development is supported by surface observations in nearby channel systems. Overall, this study shows that shear wave seismic reflection technique is a promising method for enhanced near-surface imaging in such challenging alluvial fan settings.}, language = {en} } @misc{KriegerowskiCescaOhrnbergeretal.2018, author = {Kriegerowski, Marius and Cesca, Simone and Ohrnberger, Matthias and Dahm, Torsten and Kr{\"u}ger, Frank}, title = {Event couple spectral ratio Q method for earthquake clusters}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {683}, doi = {10.25932/publishup-42602}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426029}, pages = {12}, year = {2018}, abstract = {We develop an amplitude spectral ratio method for event couples from clustered earthquakes to estimate seismic wave attenuation (Q-1) in the source volume. The method allows to study attenuation within the source region of earthquake swarms or aftershocks at depth, independent of wave path and attenuation between source region and surface station. We exploit the high-frequency slope of phase spectra using multitaper spectral estimates. The method is tested using simulated full wave-field seismograms affected by recorded noise and finite source rupture. The synthetic tests verify the approach and show that solutions are independent of focal mechanisms but also show that seismic noise may broaden the scatter of results. We apply the event couple spectral ratio method to northwest Bohemia, Czech Republic, a region characterized by the persistent occurrence of earthquake swarms in a confined source region at mid-crustal depth. Our method indicates a strong anomaly of high attenuation in the source region of the swarm with an averaged attenuation factor of Qp < 100. The application to S phases fails due to scattered P-phase energy interfering with S phases. The Qp anomaly supports the common hypothesis of highly fractured and fluid saturated rocks in the source region of the swarms in northwest Bohemia. However, high temperatures in a small volume around the swarms cannot be excluded to explain our observations.}, language = {en} }