@article{ZuehlkeSassRiebeetal.2017, author = {Z{\"u}hlke, Martin and Sass, Stephan and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Real-Time Reaction Monitoring of an Organic Multistep Reaction by Electrospray Ionization-Ion Mobility Spectrometry}, series = {ChemPlusChem}, volume = {82}, journal = {ChemPlusChem}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2192-6506}, doi = {10.1002/cplu.201700296}, pages = {1266 -- 1273}, year = {2017}, abstract = {The capability of electrospray ionization (ESI)-ion mobility (IM) spectrometry for reaction monitoring is assessed both as a stand-alone real-time technique and in combination with HPLC. A three-step chemical reaction, consisting of a Williamson ether synthesis followed by a hydrogenation and an N-alkylation step, is chosen for demonstration. Intermediates and products are determined with a drift time to mass-per-charge correlation. Addition of an HPLC column to the setup increases the separation power and allows the determination of further species. Monitoring of the intensities of the various species over the reaction time allows the detection of the end of reaction, determination of the rate-limiting step, observation of the system response in discontinuous processes, and optimization of the mass ratios of the starting materials. However, charge competition in ESI influences the quantitative detection of substances in the reaction mixture. Therefore, two different methods are investigated, which allow the quantification and investigation of reaction kinetics. The first method is based on the pre-separation of the compounds on an HPLC column and their subsequent individual detection in the ESI-IM spectrometer. The second method involves an extended calibration procedure, which considers charge competition effects and facilitates nearly real-time quantification.}, language = {en} } @article{KoetzBeitzKosmellaetal.2000, author = {Koetz, Joachim and Beitz, Toralf and Kosmella, Sabine and Tiersch, Brigitte}, title = {Polymer-modified microemulsions}, year = {2000}, language = {en} } @article{KoetzBeitzTiersch1999, author = {Koetz, Joachim and Beitz, Toralf and Tiersch, Brigitte}, title = {Self assembled polymer-surfactant systems}, year = {1999}, language = {en} } @article{PruefertVillatoroLealZuehlkeetal.2022, author = {Pr{\"u}fert, Christian and Villatoro Leal, Jos{\´e} Andr{\´e}s and Z{\"u}hlke, Martin and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Liquid phase IR-MALDI and differential mobility analysis of nano- and sub-micron particles}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {4}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d1cp04196g}, pages = {2275 -- 2286}, year = {2022}, abstract = {Infrared matrix-assisted desorption and ionization (IR-MALDI) enables the transfer of sub-micron particles (sMP) directly from suspensions into the gas phase and their characterization with differential mobility (DM) analysis. A nanosecond laser pulse at 2940 nm induces a phase explosion of the aqueous phase, dispersing the sample into nano- and microdroplets. The particles are ejected from the aqueous phase and become charged. Using IR-MALDI on sMP of up to 500 nm in diameter made it possible to surpass the 100 nm size barrier often encountered when using nano-electrospray for ionizing supramolecular structures. Thus, the charge distribution produced by IR-MALDI could be characterized systematically in the 50-500 nm size range. Well-resolved signals for up to octuply charged particles were obtained in both polarities for different particle sizes, materials, and surface modifications spanning over four orders of magnitude in concentrations. The physicochemical characterization of the IR-MALDI process was done via a detailed analysis of the charge distribution of the emerging particles, qualitatively as well as quantitatively. The Wiedensohler charge distribution, which describes the evolution of particle charging events in the gas phase, and a Poisson-derived charge distribution, which describes the evolution of charging events in the liquid phase, were compared with one another with respect to how well they describe the experimental data. Although deviations were found in both models, the IR-MALDI charging process seems to resemble a Poisson-like charge distribution mechanism, rather than a bipolar gas phase charging one.}, language = {en} } @article{ZuehlkeMeilingRoderetal.2021, author = {Z{\"u}hlke, Martin and Meiling, Till Thomas and Roder, Phillip and Riebe, Daniel and Beitz, Toralf and Bald, Ilko and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Janßen, Traute and Erhard, Marcel and Repp, Alexander}, title = {Photodynamic inactivation of E. coli bacteria via carbon nanodots}, series = {ACS omega / American Chemical Society}, volume = {6}, journal = {ACS omega / American Chemical Society}, number = {37}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {2470-1343}, doi = {10.1021/acsomega.1c01700}, pages = {23742 -- 23749}, year = {2021}, abstract = {The increasing development of antibiotic resistance in bacteria has been a major problem for years, both in human and veterinary medicine. Prophylactic measures, such as the use of vaccines, are of great importance in reducing the use of antibiotics in livestock. These vaccines are mainly produced based on formaldehyde inactivation. However, the latter damages the recognition elements of the bacterial proteins and thus could reduce the immune response in the animal. An alternative inactivation method developed in this work is based on gentle photodynamic inactivation using carbon nanodots (CNDs) at excitation wavelengths λex > 290 nm. The photodynamic inactivation was characterized on the nonvirulent laboratory strain Escherichia coli K12 using synthesized CNDs. For a gentle inactivation, the CNDs must be absorbed into the cytoplasm of the E. coli cell. Thus, the inactivation through photoinduced formation of reactive oxygen species only takes place inside the bacterium, which means that the outer membrane is neither damaged nor altered. The loading of the CNDs into E. coli was examined using fluorescence microscopy. Complete loading of the bacterial cells could be achieved in less than 10 min. These studies revealed a reversible uptake process allowing the recovery and reuse of the CNDs after irradiation and before the administration of the vaccine. The success of photodynamic inactivation was verified by viability assays on agar. In a homemade flow photoreactor, the fastest successful irradiation of the bacteria could be carried out in 34 s. Therefore, the photodynamic inactivation based on CNDs is very effective. The membrane integrity of the bacteria after irradiation was verified by slide agglutination and atomic force microscopy. The method developed for the laboratory strain E. coli K12 could then be successfully applied to the important avian pathogens Bordetella avium and Ornithobacterium rhinotracheale to aid the development of novel vaccines.}, language = {en} } @article{ZuehlkeRiebeBeitzetal.2016, author = {Z{\"u}hlke, Martin and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Andreotti, Sandro and Reinert, Knut and Zenichowski, Karl and Diener, Marc}, title = {High-performance liquid chromatography with electrospray ionization ion mobility spectrometry: Characterization, data management, and applications}, series = {Journal of separation science}, volume = {39}, journal = {Journal of separation science}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1615-9306}, doi = {10.1002/jssc.201600749}, pages = {4756 -- 4764}, year = {2016}, abstract = {The combination of high-performance liquid chromatography and electrospray ionization ion mobility spectrometry facilitates the two-dimensional separation of complex mixtures in the retention and drift time plane. The ion mobility spectrometer presented here was optimized for flow rates customarily used in high-performance liquid chromatography between 100 and 1500 mu L/min. The characterization of the system with respect to such parameters as the peak capacity of each time dimension and of the 2D spectrum was carried out based on a separation of a pesticide mixture containing 24 substances. While the total ion current chromatogram is coarsely resolved, exhibiting coelutions for a number of compounds, all substances can be separately detected in the 2D plane due to the orthogonality of the separations in retention and drift dimensions. Another major advantage of the ion mobility detector is the identification of substances based on their characteristic mobilities. Electrospray ionization allows the detection of substances lacking a chromophore. As an example, the separation of a mixture of 18 amino acids is presented. A software built upon the free mass spectrometry package OpenMS was developed for processing the extensive 2D data. The different processing steps are implemented as separate modules which can be arranged in a graphic workflow facilitating automated processing of data.}, language = {en} } @article{KoetzBeitz1997, author = {Koetz, Joachim and Beitz, Toralf}, title = {The phase behaviour of polyanion-polycation systems}, year = {1997}, language = {en} } @article{LaudienRiebeBeitzetal.2008, author = {Laudien, Robert and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Detection of explosive related nitroaromatic compounds (ERNC) by laser-based ion mobility spectrometry}, isbn = {978-0-8194-7348-6}, year = {2008}, language = {en} } @article{BrendlerRiebeRitscheletal.2013, author = {Brendler, Christian and Riebe, Daniel and Ritschel, Thomas and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Investigation of neuroleptics and other aromatic compounds by laser-based ion mobility mass spectrometry}, series = {Analytical \& bioanalytical chemistry}, volume = {405}, journal = {Analytical \& bioanalytical chemistry}, number = {22}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-012-6654-7}, pages = {7019 -- 7029}, year = {2013}, abstract = {Laser-based ion mobility (IM) spectrometry was used for the detection of neuroleptics and PAH. A gas chromatograph was connected to the IM spectrometer in order to investigate compounds with low vapour pressure. The substances were ionized by resonant two-photon ionization at the wavelengths lambda = 213 and 266 nm and pulse energies between 50 and 300 mu J. Ion mobilities, linear ranges, limits of detection and response factors are reported. Limits of detection for the substances are in the range of 1-50 fmol. Additionally, the mechanism of laser ionization at atmospheric pressure was investigated. First, the primary product ions were determined by a laser-based time-of-flight mass spectrometer with effusive sample introduction. Then, a combination of a laser-based IM spectrometer and an ion trap mass spectrometer was developed and characterized to elucidate secondary ion-molecule reactions that can occur at atmospheric pressure. Some substances, namely naphthalene, anthracene, promazine and thioridazine, could be detected as primary ions (radical cations), while other substances, in particular acridine, phenothiazine and chlorprothixene, are detected as secondary ions (protonated molecules). The results are interpreted on the basis of quantum chemical calculations, and an ionization mechanism is proposed.}, language = {en} } @article{RiebeLaudienBrendleretal.2013, author = {Riebe, Daniel and Laudien, Robert and Brendler, Christian and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Laser ionization of H2S and ion-molecule reactions of H3S+ in laser-based ion mobility spectrometry and drift cell time-of-flight mass spectrometry}, series = {Analytical \& bioanalytical chemistry}, volume = {405}, journal = {Analytical \& bioanalytical chemistry}, number = {22}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-013-7186-5}, pages = {7031 -- 7039}, year = {2013}, abstract = {The detection of hydrogen sulfide (H2S) by 2 + 1 resonance-enhanced multi-photon ionization (REMPI) and the application of H2S as a laser dopant for the detection of polar compounds in laser ion mobility (IM) spectrometry at atmospheric pressure were investigated. Underlying ionization mechanisms were elucidated by additional studies employing a drift cell interfaced to a time-of-flight mass spectrometer. Depending on the pressure, the primary ions H2S+, HS+, S+, and secondary ions, such as H3S+, were observed. The 2 + 1 REMPI spectrum of H2S near lambda = 302.5 nm was recorded at atmospheric pressure. Furthermore, the limit of detection and the linear range were established. In the second part of the work, H2S was investigated as an H2O analogous laser dopant for the ionization of polar substances by proton transfer. H2S exhibits a proton affinity (PA) similar to that of H2O, but a significantly lower ionization energy facilitating laser ionization. Ion-molecule reactions (IMR) of H3S+ with a variety of polar substances with PA between 754.6 and 841.6 kJ/mol were investigated. Representatives of different compound classes, including alcohols, ketones, esters, and nitroaromatics were analyzed. The IM spectra resulting from IMR of H3S+ and H3O+ with these substances are similar in structure, i.e., protonated monomer and dimer ion peaks are found depending on the analyte concentration.}, language = {en} } @article{RiebeZuehlkeZenichowskietal.2011, author = {Riebe, Daniel and Z{\"u}hlke, Martin and Zenichowski, Karl and Beitz, Toralf and Dosche, Carsten and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Characterization of rhodamine 6G release in electrospray ionization by means of spatially resolved fluorescence spectroscopy}, series = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, volume = {225}, journal = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, number = {9-10}, publisher = {De Gruyter Oldenbourg}, address = {M{\"u}nchen}, issn = {0942-9352}, doi = {10.1524/zpch.2011.0149}, pages = {1055 -- 1072}, year = {2011}, abstract = {In the present work, the density distribution of rhodamine 6G ions (R6G) in the gas phase and the droplets of an electrospray plume was studied by spatial and spectral imaging. The intention is to contribute to the fundamental understanding of the release mechanism of gaseous R6G in the electrospray ionization (ESI) process. Furthermore, the influence of ESI-parameters on the release efficiency of R6G, e. g. solvent flow, R6G and salt concentration were examined via direct fluorescence imaging of R6G. A solvent-shift of the fluorescence maximum,lambda(max) = 555 nm in methanolic solution and lambda(max) = 505 nm in gas phase, allows the discrimination between solvated and gaseous R6G. Two experimental setups were used for our measurements. In the first experiment, the R6G fluorescence and the light scattered from the spray plume were imaged in two spatial dimensions using a tunable wavelength filter. The second experiment was designed for obtaining 1-dimensional spatially resolved emission spectra of the spray. Here, the intensity distribution of solvated and gaseous R6G as well as scattered light (lambda = 355 nm) were measured simultaneously. The results show the distribution of gaseous R6G in the plane, orthogonal to the ESI capillary, decreasing slightly towards the spray center and showing maxima at the cone margins. The distribution of gaseous R6G confirms the preferred release of gaseous ions from nano-droplets, indicating the ion evaporation model (IEM) to be the dominating release mechanism. Up to now, only a few fluorescence spectra of ionic compounds in the gas phase were published because the measurement of emission spectra of mass-selected ions in an ion trap is experimentally challenging. The fluorescence spectrum of gaseous lucigenin at atmospheric pressure is reported for the first time. This spectrum of lucigenin in the gas phase exhibits a blue shift of about Delta lambda = 10 nm in comparison to the corresponding spectrum in methanol.}, language = {en} } @article{RiebeBeitzDoscheetal.2014, author = {Riebe, Daniel and Beitz, Toralf and Dosche, Carsten and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Raab, Volker and Raab, Corinna and Unverzagt, Matthias}, title = {High-resolution spectrometer using combined dispersive and interferometric wavelength separation for raman and laser-induced Breakdown Spectroscopy (LIBS)}, series = {Applied spectroscopy : an international journal of spectroscopy ; official publication of the Society for Applied Spectroscopy}, volume = {68}, journal = {Applied spectroscopy : an international journal of spectroscopy ; official publication of the Society for Applied Spectroscopy}, number = {9}, publisher = {Society for Applied Spectroscopy}, address = {Frederick}, issn = {0003-7028}, doi = {10.1366/13-07426}, pages = {1030 -- 1038}, year = {2014}, abstract = {In this paper the concept of a compact high-resolution spectrometer based on the combination of dispersive and interferometric elements is presented. Dispersive elements are used to spectrally resolve the light in one direction with coarse resolution (Delta lambda < 0.5 nm), while perpendicular to that direction an etalon provides high spectral resolution (Delta lambda < 50 pm). This concept for two-dimensional spectroscopy has been implemented for the wavelength range lambda = 350-650 nm. Appropriate algorithms for reconstructing spectra from the two-dimensional raw data and for wavelength calibration were established in an analysis software. Potential applications for this new spectrometer are Raman and laser-induced breakdown spectroscopy (LIBS). Resolutions down to 28 pm (routinely 54 pm) could be realized for these applications.}, language = {en} } @article{RiebeEderRitscheletal.2016, author = {Riebe, Daniel and Eder, Alexander and Ritschel, Thomas and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Beil, Andreas and Blaschke, Michael and Ludwig, Thomas}, title = {Atmospheric pressure chemical ionization of explosives induced by soft X-radiation in ion mobility spectrometry: mass spectrometric investigation of the ionization reactions of drift gasses, dopants and alkyl nitrates}, series = {Journal of mass spectrometr}, volume = {51}, journal = {Journal of mass spectrometr}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1076-5174}, doi = {10.1002/jms.3784}, pages = {566 -- 577}, year = {2016}, abstract = {A promising replacement for the radioactive sources commonly encountered in ion mobility spectrometers is a miniaturized, energy-efficient photoionization source that produce the reactant ions via soft X-radiation (2.8 keV). In order to successfully apply the photoionization source, it is imperative to know the spectrum of reactant ions and the subsequent ionization reactions leading to the detection of analytes. To that end, an ionization chamber based on the photoionization source that reproduces the ionization processes in the ion mobility spectrometer and facilitates efficient transfer of the product ions into a mass spectrometer was developed. Photoionization of pure gasses and gas mixtures containing air, N-2, CO2 and N2O and the dopant CH2Cl2 is discussed. The main product ions of photoionization are identified and compared with the spectrum of reactant ions formed by radioactive and corona discharge sources on the basis of literature data. The results suggest that photoionization by soft X-radiation in the negative mode is more selective than the other sources. In air, adduct ions of O-2 - with H2O and CO2 were exclusively detected. Traces of CO2 impact the formation of adduct ions of O-2 - and Cl -(upon addition of dopant) and are capable of suppressing them almost completely at high CO2 concentrations. Additionally, the ionization products of four alkyl nitrates (ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate and pentaerythritol tetranitrate) formed by atmospheric pressure chemical ionization induced by X-ray photoionization in different gasses (air, N-2 and N2O) and dopants (CH2Cl2, C2H5Br and CH3I) are investigated. The experimental studies are complemented by density functional theory calculations of the most important adduct ions of the alkyl nitrates (M) used for their spectrometric identification. In addition to the adduct ions [M + NO3](-) and [M + Cl](-), adduct ions such as [M + N2O2](-), [M + Br](-) and [M+ I](-) were detected, and their gas-phase structures and energetics are investigated by density functional theory calculations. Copyright (C) 2016 John Wiley \& Sons, Ltd.}, language = {en} } @article{ZuehlkeRiebeBeitzetal.2015, author = {Z{\"u}hlke, Martin and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Zenichowski, Karl and Diener, Marc and Linscheid, Michael W.}, title = {An electrospray ionization-ion mobility spectrometer as detector for high-performance liquid chromatography}, series = {European journal of mass spectrometry}, volume = {21}, journal = {European journal of mass spectrometry}, number = {3}, publisher = {WeltTrends}, address = {Sussex}, issn = {1469-0667}, doi = {10.1255/ejms.1367}, pages = {391 -- 402}, year = {2015}, abstract = {The application of electrospray ionization (ESI) ion mobility (IM) spectrometry on the detection end of a high-performance liquid chromatograph has been a subject of study for some time. So far, this method has been limited to low flow rates or has required splitting of the liquid flow. This work presents a novel concept of an ESI source facilitating the stable operation of the spectrometer at flow rates between 10 mu L min(-1) and 1500 mu L min(-1) without flow splitting, advancing the T-cylinder design developed by Kurnin and co-workers. Flow rates eight times faster than previously reported were achieved because of a more efficient dispersion of the liquid at increased electrospray voltages combined with nebulization by a sheath gas. Imaging revealed the spray operation to be in a rotationally symmetric multijet-mode. The novel ESI-IM spectrometer tolerates high water contents (<= 90\%) and electrolyte concentrations up to 10 mM, meeting another condition required of high-performance liquid chromatography (HPLC) detectors. Limits of detection of 50 nM for promazine in the positive mode and 1 mu M for 1,3-dinitrobenzene in the negative mode were established. Three mixtures of reduced complexity (five surfactants, four neuroleptics, and two isomers) were separated in the millisecond regime in stand-alone operation of the spectrometer. Separations of two more complex mixtures (five neuroleptics and 13 pesticides) demonstrate the application of the spectrometer as an HPLC detector. The examples illustrate the advantages of the spectrometer over the established diode array detector, in terms of additional IM separation of substances not fully separated in the retention time domain as well as identification of substances based on their characteristic IMs.}, language = {en} } @article{KoetzKosmellaBeitz2001, author = {Koetz, Joachim and Kosmella, Sabine and Beitz, Toralf}, title = {Self-assembled Polyelectrolyte Systems}, year = {2001}, language = {en} } @article{BeitzKoetzFriberg1999, author = {Beitz, Toralf and Koetz, Joachim and Friberg, Stig E.}, title = {Polymer-modified ionic microemulsion formed in the system SDS/Water/Xylene/Pentanol}, year = {1999}, language = {en} } @article{ZuehlkeZenichowskiRiebeetal.2017, author = {Z{\"u}hlke, Martin and Zenichowski, Karl and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Subambient pressure electrospray ionization ion mobility spectrometry}, series = {International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry}, volume = {20}, journal = {International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry}, publisher = {Springer}, address = {Heidelberg}, issn = {1435-6163}, doi = {10.1007/s12127-017-0215-x}, pages = {47 -- 56}, year = {2017}, abstract = {The pressure dependence of sheath gas assisted electrospray ionization (ESI) was investigated based on two complementary experimental setups, namely an ESI-ion mobility (IM) spectrometer and an ESI capillary - Faraday plate setup housed in an optically accessible vacuum chamber. The ESI-IM spectrometer is capable of working in the pressure range between 300 and 1000 mbar. Another aim was the assessment of the analytical capabilities of a subambient pressure ESI-IM spectrometer. The pressure dependence of ESI was characterized by imaging the electrospray and recording current-voltage (I-U) curves. Qualitatively different behavior was observed in both setups. While the current rises continuously with the voltage in the capillary-plate setup, a sharp increase of the current was measured in the IM spectrometer above a pressure-dependent threshold voltage. The different character can be attributed to the detection of different species in both experiments. In the capillary-plate experiment, a multitude of charged species are detected while only desolvated ions attribute to the IM spectrometer signal. This finding demonstrates the utility of IM spectrometry for the characterization of ESI, since in contrast to the capillary-plate setup, the release of ions from the electrospray droplets can be observed. The I-U curves change significantly with pressure. An important result is the reduction of the maximum current with decreasing pressure. The connected loss of ionization efficiency can be compensated by a more efficient transfer of ions in the IM spectrometer at increased E/N. Thus, similar limits of detection could be obtained at 500 mbar and 1 bar.}, language = {en} } @article{BeitzBechmannMitzner1998, author = {Beitz, Toralf and Bechmann, Wolfgang and Mitzner, Rolf}, title = {Investigations of reactions of selected Azaarenes with radicals in water, 2. Chlorine and Bromine radicals}, year = {1998}, language = {en} } @article{TessmannBeitzBechmannetal.1999, author = {Tessmann, Joachim and Beitz, Toralf and Bechmann, Wolfgang and Mitzner, Rolf}, title = {Untersuchungen zu Toxizit{\"a}ts{\"a}nderungen in Photoreaktionen von Azaarenen}, year = {1999}, language = {de} } @article{WojcikBrinkmannZduneketal.2020, author = {Wojcik, Michal and Brinkmann, Pia and Zdunek, Rafał and Riebe, Daniel and Beitz, Toralf and Merk, Sven and Cieslik, Katarzyna and Mory, David and Antonczak, Arkadiusz}, title = {Classification of copper minerals by handheld laser-induced breakdown spectroscopy and nonnegative tensor factorisation}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s20185152}, pages = {17}, year = {2020}, abstract = {Laser-induced breakdown spectroscopy (LIBS) analysers are becoming increasingly common for material classification purposes. However, to achieve good classification accuracy, mostly noncompact units are used based on their stability and reproducibility. In addition, computational algorithms that require significant hardware resources are commonly applied. For performing measurement campaigns in hard-to-access environments, such as mining sites, there is a need for compact, portable, or even handheld devices capable of reaching high measurement accuracy. The optics and hardware of small (i.e., handheld) devices are limited by space and power consumption and require a compromise of the achievable spectral quality. As long as the size of such a device is a major constraint, the software is the primary field for improvement. In this study, we propose a novel combination of handheld LIBS with non-negative tensor factorisation to investigate its classification capabilities of copper minerals. The proposed approach is based on the extraction of source spectra for each mineral (with the use of tensor methods) and their labelling based on the percentage contribution within the dataset. These latent spectra are then used in a regression model for validation purposes. The application of such an approach leads to an increase in the classification score by approximately 5\% compared to that obtained using commonly used classifiers such as support vector machines, linear discriminant analysis, and the k-nearest neighbours algorithm.}, language = {en} } @article{BeitzBechmannMitzner1998, author = {Beitz, Toralf and Bechmann, Wolfgang and Mitzner, Rolf}, title = {Investigations of reactions of selected Azaarenes with radicals in water, 1. Hydroxyl and sulfate radicals}, year = {1998}, language = {en} } @article{BeitzBechmannMitzner1999, author = {Beitz, Toralf and Bechmann, Wolfgang and Mitzner, Rolf}, title = {Investigation on the photoreactions of Nitrate and Nitrite ions with selected Azaarenes in water}, year = {1999}, language = {en} } @article{BeitzKoetzWolfetal.2001, author = {Beitz, Toralf and Koetz, Joachim and Wolf, Gunter and Kleinpeter, Erich and Friberg, Stig E.}, title = {Poly(N-vinyl-2-pyrrolidone) and 1-octyl-2-pyrrolidinone modified ionic microemulsions}, year = {2001}, language = {en} } @article{ErlerRiebeBeitzetal.2020, author = {Erler, Alexander and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Grothusheitkamp, Daniela and Kunz, Thomas and Methner, Frank-J{\"u}rgen}, title = {Characterization of volatile metabolites formed by molds on barley by mass and ion mobility spectrometry}, series = {Journal of mass spectrometr}, volume = {55}, journal = {Journal of mass spectrometr}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1076-5174}, doi = {10.1002/jms.4501}, pages = {1 -- 10}, year = {2020}, abstract = {The contamination of barley by molds on the field or in storage leads to the spoilage of grain and the production of mycotoxins, which causes major economic losses in malting facilities and breweries. Therefore, on-site detection of hidden fungus contaminations in grain storages based on the detection of volatile marker compounds is of high interest. In this work, the volatile metabolites of 10 different fungus species are identified by gas chromatography (GC) combined with two complementary mass spectrometric methods, namely, electron impact (EI) and chemical ionization at atmospheric pressure (APCI)-mass spectrometry (MS). The APCI source utilizes soft X-radiation, which enables the selective protonation of the volatile metabolites largely without side reactions. Nearly 80 volatile or semivolatile compounds from different substance classes, namely, alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, alkenes, terpenes, oxidized terpenes, sesquiterpenes, and oxidized sesquiterpenes, could be identified. The profiles of volatile and semivolatile metabolites of the different fungus species are characteristic of them and allow their safe differentiation. The application of the same GC parameters and APCI source allows a simple method transfer from MS to ion mobility spectrometry (IMS), which permits on-site analyses of grain stores. Characterization of IMS yields limits of detection very similar to those of APCI-MS. Accordingly, more than 90\% of the volatile metabolites found by APCI-MS were also detected in IMS. In addition to different fungus genera, different species of one fungus genus could also be differentiated by GC-IMS.}, language = {en} } @article{ErlerRiebeBeitzetal.2020, author = {Erler, Alexander and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Gebbers, Robin}, title = {Soil Nutrient Detection for Precision Agriculture Using Handheld Laser-Induced Breakdown Spectroscopy (LIBS) and Multivariate Regression Methods (PLSR, Lasso and GPR)}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s20020418}, pages = {17}, year = {2020}, abstract = {Precision agriculture (PA) strongly relies on spatially differentiated sensor information. Handheld instruments based on laser-induced breakdown spectroscopy (LIBS) are a promising sensor technique for the in-field determination of various soil parameters. In this work, the potential of handheld LIBS for the determination of the total mass fractions of the major nutrients Ca, K, Mg, N, P and the trace nutrients Mn, Fe was evaluated. Additionally, other soil parameters, such as humus content, soil pH value and plant available P content, were determined. Since the quantification of nutrients by LIBS depends strongly on the soil matrix, various multivariate regression methods were used for calibration and prediction. These include partial least squares regression (PLSR), least absolute shrinkage and selection operator regression (Lasso), and Gaussian process regression (GPR). The best prediction results were obtained for Ca, K, Mg and Fe. The coefficients of determination obtained for other nutrients were smaller. This is due to much lower concentrations in the case of Mn, while the low number of lines and very weak intensities are the reason for the deviation of N and P. Soil parameters that are not directly related to one element, such as pH, could also be predicted. Lasso and GPR yielded slightly better results than PLSR. Additionally, several methods of data pretreatment were investigated.}, language = {en} } @article{ErlerRiebeBeitzetal.2023, author = {Erler, Alexander and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Leenen, Mathias and P{\"a}tzold, Stefan and Ostermann, Markus and W{\´o}jcik, Michał}, title = {Mobile laser-induced breakdown spectroscopy for future application in precision agriculture}, series = {Sensors}, volume = {23}, journal = {Sensors}, number = {16}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s23167178}, pages = {17}, year = {2023}, abstract = {In precision agriculture, the estimation of soil parameters via sensors and the creation of nutrient maps are a prerequisite for farmers to take targeted measures such as spatially resolved fertilization. In this work, 68 soil samples uniformly distributed over a field near Bonn are investigated using laser-induced breakdown spectroscopy (LIBS). These investigations include the determination of the total contents of macro- and micronutrients as well as further soil parameters such as soil pH, soil organic matter (SOM) content, and soil texture. The applied LIBS instruments are a handheld and a platform spectrometer, which potentially allows for the single-point measurement and scanning of whole fields, respectively. Their results are compared with a high-resolution lab spectrometer. The prediction of soil parameters was based on multivariate methods. Different feature selection methods and regression methods like PLS, PCR, SVM, Lasso, and Gaussian processes were tested and compared. While good predictions were obtained for Ca, Mg, P, Mn, Cu, and silt content, excellent predictions were obtained for K, Fe, and clay content. The comparison of the three different spectrometers showed that although the lab spectrometer gives the best results, measurements with both field spectrometers also yield good results. This allows for a method transfer to the in-field measurements.}, language = {en} } @article{ErlerRiebeBeitzetal.2018, author = {Erler, Alexander and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Grothusheitkamp, Daniela and Kunz, T. and Methner, Frank-J{\"u}rgen}, title = {Detection of volatile organic compounds in the headspace above mold fungi by GC-soft X-radiation-based APCI-MS}, series = {Journal of mass spectrometr}, volume = {53}, journal = {Journal of mass spectrometr}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {1076-5174}, doi = {10.1002/jms.4210}, pages = {911 -- 920}, year = {2018}, abstract = {Mold fungi on malting barley grains cause major economic loss in malting and brewery facilities. Possible proxies for their detection are volatile and semivolatile metabolites. Among those substances, characteristic marker compounds have to be identified for a confident detection of mold fungi in varying surroundings. The analytical determination is usually performed through passive sampling with solid phase microextraction, gas chromatographic separation, and detection by electron ionization mass spectrometry (EI-MS), which often does not allow a confident determination due to the absence of molecular ions. An alternative is GC-APCI-MS, generally, allowing the determination of protonated molecular ions. Commercial atmospheric pressure chemical ionization (APCI) sources are based on corona discharges, which are often unspecific due to the occurrence of several side reactions and produce complex product ion spectra. To overcome this issue, an APCI source based on soft X-radiation is used here. This source facilitates a more specific ionization by proton transfer reactions only. In the first part, the APCI source is characterized with representative volatile fungus metabolites. Depending on the proton affinity of the metabolites, the limits of detection are up to 2 orders of magnitude below those of EI-MS. In the second part, the volatile metabolites of the mold fungus species Aspergillus, Alternaria, Fusarium, and Penicillium are investigated. In total, 86 compounds were found with GC-EI/APCI-MS. The metabolites identified belong to the substance classes of alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, terpenes, and sesquiterpenes. In addition to substances unspecific for the individual fungus species, characteristic patterns of metabolites, allowing their confident discrimination, were found for each of the 4 fungus species. Sixty-seven of the 86 metabolites are detected by X-ray-based APCI-MS alone. The discrimination of the fungus species based on these metabolites alone was possible. Therefore, APCI-MS in combination with collision induced dissociation alone could be used as a supervision method for the detection of mold fungi.}, language = {en} } @article{RiebeErlerBrinkmannetal.2019, author = {Riebe, Daniel and Erler, Alexander and Brinkmann, Pia and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Gebbers, Robin}, title = {Comparison of Calibration Approaches in Laser-Induced Breakdown Spectroscopy for Proximal Soil Sensing in Precision Agriculture}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {23}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19235244}, pages = {16}, year = {2019}, abstract = {The lack of soil data, which are relevant, reliable, affordable, immediately available, and sufficiently detailed, is still a significant challenge in precision agriculture. A promising technology for the spatial assessment of the distribution of chemical elements within fields, without sample preparation is laser-induced breakdown spectroscopy (LIBS). Its advantages are contrasted by a strong matrix dependence of the LIBS signal which necessitates careful data evaluation. In this work, different calibration approaches for soil LIBS data are presented. The data were obtained from 139 soil samples collected on two neighboring agricultural fields in a quaternary landscape of northeast Germany with very variable soils. Reference analysis was carried out by inductively coupled plasma optical emission spectroscopy after wet digestion. The major nutrients Ca and Mg and the minor nutrient Fe were investigated. Three calibration strategies were compared. The first method was based on univariate calibration by standard addition using just one soil sample and applying the derived calibration model to the LIBS data of both fields. The second univariate model derived the calibration from the reference analytics of all samples from one field. The prediction is validated by LIBS data of the second field. The third method is a multivariate calibration approach based on partial least squares regression (PLSR). The LIBS spectra of the first field are used for training. Validation was carried out by 20-fold cross-validation using the LIBS data of the first field and independently on the second field data. The second univariate method yielded better calibration and prediction results compared to the first method, since matrix effects were better accounted for. PLSR did not strongly improve the prediction in comparison to the second univariate method.}, language = {en} }