@book{MientusKlempinNowaketal.2023, author = {Mientus, Lukas and Klempin, Christiane and Nowak, Anna and Wyss, Corinne and Aufschnaiter, Claudia von and Faix, Ann-Christin and te Poel, Kathrin and Wahbe, Nadia and Pieper, Martin and H{\"o}ller, Katharina and Kallenbach, Lea and F{\"o}rster, Magdalena and Redecker, Anke and Dick, Mirjam and Holle, J{\"o}rg and Schneider, Edina and Rehfeldt, Daniel and Brauns, Sarah and Abels, Simone and Ferencik-Lehmkuhl, Daria and Fr{\"a}nkel, Silvia and Frohn, Julia and Liebsch, Ann-Catherine and Pech, Detlef and Schreier, Pascal and Jessen, Moiken and Großmann, Uta and Skintey, Lesya and Voerkel, Paul and Vaz Ferreira, Mergenfel A. and Zimmermann, Jan-Simon and Buddeberg, Magdalena and Henke, Vanessa and Hornberg, Sabine and V{\"o}lschow, Yvette and Warrelmann, Julia-Nadine and Malek, Jennifer and Tinnefeld, Anja and Schmidt, Peggy and Bauer, Tobias and J{\"a}nisch, Christopher and Spitzer, Lisa and Franken, Nadine and Degeling, Maria and Preisfeld, Angelika and Meier, Jana and K{\"u}th, Simon and Scholl, Daniel and Vogelsang, Christoph and Watson, Christina and Weißbach, Anna and Kulgemeyer, Christoph and Oetken, Mandy and Gorski, Sebastian and Kubsch, Marcus and Sorge, Stefan and Wulff, Peter and Fellenz, Carolin D. and Schnell, Susanne and Larisch, Cathleen and Kaiser, Franz and Knott, Christina and Reimer, Stefanie and Stegm{\"u}ller, Nathalie and Boukray{\^a}a Trabelsi, Kathrin and Schißlbauer, Franziska and Lemberger, Lukas and Barth, Ulrike and Wiehl, Angelika and Rogge, Tim and B{\"o}hnke, Anja and Dietz, Dennis and Großmann, Leroy and Wienmeister, Annett and Zoppke, Till and Jiang, Lisa and Gr{\"u}nbauer, Stephanie and Ostersehlt, D{\"o}rte and Peukert, Sophia and Sch{\"a}fer, Christoph and L{\"o}big, Anna and Br{\"o}ll, Leena and Brandt, Birgit and Breuer, Meike and Dausend, Henriette and Krelle, Michael and Andersen, Gesine and Falke, Sascha and Kindermann-G{\"u}zel, Kristin and K{\"o}rner, Katrina and Lottermoser, Lisa-Marie and P{\"u}gner, Kati and Sonnenburg, Nadine and Akarsu, Selim and Rechl, Friederike and Gadinger, Laureen and Heinze, Lena and Wittmann, Eveline and Franke, Manuela and Lachmund, Anne-Marie and B{\"o}ttger, Julia and Hannover, Bettina and Behrendt, Renata and Conty, Valentina and Grundmann, Stephanie and Ghassemi, Novid and Opitz, Ben and Br{\"a}mer, Martin and Gasparjan, David and Sambanis, Michaela and K{\"o}ster, Hilde and L{\"u}cke, Martin and Nordmeier, Volkhard and Schaal, Sonja and Haberbosch, Maximilian and Meissner, Maren and Schaal, Steffen and Br{\"u}chner, Melanie and Riehle, Tamara and Leopold, Bengta Marie and Gerlach, Susanne and Rau-Patschke, Sarah and Skorsetz, Nina and Weber, Nadine and Damk{\"o}hler, Jens and Elsholz, Markus and Trefzger, Thomas and Lewek, Tobias and Borowski, Andreas}, title = {Reflexion in der Lehrkr{\"a}ftebildung}, series = {Potsdamer Beitr{\"a}ge f{\"u}r Lehrkr{\"a}ftebildung und Bildungsforschung}, journal = {Potsdamer Beitr{\"a}ge f{\"u}r Lehrkr{\"a}ftebildung und Bildungsforschung}, number = {4}, editor = {Mientus, Lukas and Klempin, Christiane and Nowak, Anna}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-566-8}, issn = {2626-3556}, doi = {10.25932/publishup-59171}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-591717}, publisher = {Universit{\"a}t Potsdam}, pages = {452}, year = {2023}, abstract = {Reflexion ist eine Schl{\"u}sselkategorie f{\"u}r die professionelle Entwicklung von Lehrkr{\"a}ften, welche als Ausbildungsziel in den Bildungsstandards f{\"u}r die Lehrkr{\"a}ftebildung verankert ist. Eine Verstetigung universit{\"a}r gepr{\"a}gter Forschung und Modellierung in der praxisnahen Anwendung im schulischen Kontext bietet Potentiale nachhaltiger Professionalisierung. Die St{\"a}rkung reflexionsbezogener Kompetenzen durch Empirie und Anwendung scheint eine phasen{\"u}bergreifende Herausforderung der Lehrkr{\"a}ftebildung zu sein, die es zu bew{\"a}ltigen gilt. Ziele des Tagungsbandes Reflexion in der Lehrkr{\"a}ftebildung sind eine theoretische Sch{\"a}rfung des Konzeptes „Reflexive Professionalisierung" und der Austausch {\"u}ber Fragen der Einbettung wirksamer reflexionsbezogener Lerngelegenheiten in die Lehrkr{\"a}ftebildung. Forschende und Lehrende der‚ drei Phasen (Studium, Referendariat sowie Fort- und Weiterbildung) der Lehrkr{\"a}ftebildung stellen Lehrkonzepte und Forschungsprojekte zum Thema Reflexion in der Lehrkr{\"a}ftebildung vor und diskutieren diese. Gemeinsam mit Teilnehmenden aller Phasen und von verschiedenen Standorten der Lehrkr{\"a}ftebildung werden zuk{\"u}nftige Herausforderungen identifiziert und L{\"o}sungsans{\"a}tze herausgearbeitet.}, language = {de} } @article{BuschMeissnerPotthoffetal.2014, author = {Busch, Jan Philip and Meissner, Tobias and Potthoff, Annegret and Oswald, Sascha}, title = {Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media}, series = {Journal of contaminant hydrology}, volume = {164}, journal = {Journal of contaminant hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-7722}, doi = {10.1016/j.jconhyd.2014.05.006}, pages = {25 -- 34}, year = {2014}, abstract = {Injection of nanoscale zero-valent iron (nZVI) has recently gained great interest as emerging technology for in-situ remediation of chlorinated organic compounds from groundwater systems. Zero-valent iron (ZVI) is able to reduce organic compounds and to render it to less harmful substances. The use of nanoscale particles instead of granular or microscale particles can increase dechlorination rates by-orders of magnitude due to its high surface area. However, classical nZVI appears to be hampered in its environmental application by its limited mobility. One approach is colloid supported transport of nZVI, where the nZVI gets transported by a Mobile colloid. In this study transport properties of activated carbon colloid supported nZVI (c-nZVI; d(50) = 2.4 mu m) are investigated in column tests using columns of 40 cm length, which were filled with porous media. A suspension was pumped through the column under different physicochemical conditions (addition of a polyanionic stabilizer and changes in pH and ionic strength). Highest observed breakthrough was 62\% of the injected concentration in glass beads with addition of stabilizer. Addition of mono- and bivalent salt, e.g. more than 0.5 mM/L CaCl2, can decrease mobility and changes in pH to values below six can inhibit mobility at all. Measurements of colloid sizes and zeta potentials show changes in the mean particle size by a factor of ten and an increase of zeta potential from -62 mV to -80 mV during the transport experiment. However, results suggest potential applicability of c-nZVI under field conditions. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{BuschMeissnerPotthoffetal.2015, author = {Busch, Jan Philip and Meißner, Tobias and Potthoff, Annegret and Bleyl, Steffen and Georgi, Anett and Mackenzie, Katrin and Trabitzsch, Ralf and Werban, Ulrike and Oswald, Sascha}, title = {A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater}, series = {Journal of contaminant hydrology}, volume = {181}, journal = {Journal of contaminant hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-7722}, doi = {10.1016/j.jconhyd.2015.03.009}, pages = {59 -- 68}, year = {2015}, abstract = {The application of nanoscale zero-valent iron (nZVI) for subsurface remediation of groundwater contaminants is a promising new technology, which can be understood as alternative to the permeable reactive barrier technique using granular iron. Dechlorination of organic contaminants by zero-valent iron seems promising. Currently, one limitation to widespread deployment is the fast agglomeration and sedimentation of nZVI in colloidal suspensions, even more so when in soils and sediments, which limits the applicability for the treatment of sources and plumes of contamination. Colloid-supported nZVI shows promising characteristics to overcome these limitations. Mobility of Carbo-Iron Colloids (CIC) - a newly developed composite material based on finely ground activated carbon as a carrier for nZVI - was tested in a field application: In this study, a horizontal dipole flow field was established between two wells separated by 53 m in a confined, natural aquifer. The injection/extraction rate was 500 L/h. Approximately 12 kg of CIC was suspended with the polyanionic stabilizer carboxymethyl cellulose. The suspension was introduced into the aquifer at the injection well. Breakthrough of CIC was observed visually and based on total particle and iron concentrations detected in samples from the extraction well. Filtration of water samples revealed a particle breakthrough of about 12\% of the amount introduced. This demonstrates high mobility of CIC particles and we suggest that nZVI carried on CIC can be used for contaminant plume remediation by in-situ formation of reactive barriers. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @misc{BuschMeissnerPotthoffetal.2011, author = {Busch, Jan Philip and Meißner, Tobias and Potthoff, Annegret and Oswald, Sascha}, title = {Plating of nano zero-valent iron (nZVI) on activated carbon : a fast delivery method of iron for source remediation?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53792}, year = {2011}, abstract = {The use of nano zerovalent iron (nZVI) for environmental remediation is a promising new technique for in situ remediation. Due to its high surface area and high reactivity, nZVI is able to dechlorinate organic contaminants and render them harmless. Limited mobility, due to fast aggregation and sedimentation of nZVI, limits the capability for source and plume remediation. Carbo-Iron is a newly developed material consisting of activated carbon particles (d50 = 0,8 µm) that are plated with nZVI particles. These particles combine the mobility of activated carbon and the reactivity of nZVI. This paper presents the first results of the transport experiments.}, language = {en} } @article{BuschMeissnerPotthoffetal.2014, author = {Busch, Jan Philip and Meissner, Tobias and Potthoff, Annegret and Oswald, Sascha}, title = {Investigations on mobility of carbon colloid supported nanoscale zero-valent iron (nZVI) in a column experiment and a laboratory 2D-aquifer test system}, series = {Environmental science and pollution research : official organ of the EuCheMS Division for Chemistry and the Environment, EuCheMS DCE}, volume = {21}, journal = {Environmental science and pollution research : official organ of the EuCheMS Division for Chemistry and the Environment, EuCheMS DCE}, number = {18}, publisher = {Springer}, address = {Heidelberg}, issn = {0944-1344}, doi = {10.1007/s11356-014-3049-7}, pages = {10908 -- 10916}, year = {2014}, abstract = {Nanoscale zero-valent iron (nZVI) has recently gained great interest in the scientific community as in situ reagent for installation of permeable reactive barriers in aquifer systems, since nZVI is highly reactive with chlorinated compounds and may render them to harmless substances. However, nZVI has a high tendency to agglomerate and sediment; therefore it shows very limited transport ranges. One new approach to overcome the limited transport of nZVI in porous media is using a suited carrier colloid. In this study we tested mobility of a carbon colloid supported nZVI particle "Carbo-Iron Colloids" (CIC) with a mean size of 0.63 mu m in a column experiment of 40 cm length and an experiment in a two-dimensional (2D) aquifer test system with dimensions of 110x40x5 cm. Results show a breakthrough maximum of 82 \% of the input concentration in the column experiment and 58 \% in the 2D-aquifer test system. Detected residuals in porous media suggest a strong particle deposition in the first centimeters and few depositions in the porous media in the further travel path. Overall, this suggests a high mobility in porous media which might be a significant enhancement compared to bare or polyanionic stabilized nZVI.}, language = {en} }