@misc{WinklerHeinken2007, author = {Winkler, Eckart and Heinken, Thilo}, title = {Spread of an ant-dispersed annual herb : an individual-based simulation study on population development of Melampyrum pratense L.}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-46491}, year = {2007}, abstract = {The paper presents a simulation and parameter-estimation approach for evaluating stochastic patterns of population growth and spread of an annual forest herb, Melampyrum pratense (Orobanchaceae). The survival of a species during large-scale changes in land use and climate will depend, to a considerable extent, on its dispersal and colonisation abilities. Predictions on species migration need a combination of field studies and modelling efforts. Our study on the ability of M. pratense to disperse into so far unoccupied areas was based on experiments in secondary woodland in NE Germany. Experiments started in 1997 at three sites where the species was not yet present, with 300 seeds sown within one square meter. Population development was then recorded until 2001 by mapping of individuals with a resolution of 5 cm. Additional observations considered density dependence of seed production. We designed a spatially explicit individual-based computer simulation model to explain the spatial patterns of population development and to predict future population spread. Besides primary drop of seeds (barochory) it assumed secondary seed transport by ants (myrmecochory) with an exponentially decreasing dispersal tail. An important feature of populationpattern explanation was the simultaneous estimation of both population-growth and dispersal parameters from consistent spatio-temporal data sets. As the simulation model produced stochastic time series and random spatially discrete distributions of individuals we estimated parameters by minimising the expectation of weighted sums of squares. These sums-ofsquares criteria considered population sizes, radial population distributions around the area of origin and distributions of individuals within squares of 25*25 cm, the range of density action. Optimal parameter values, together with the precision of the estimates, were obtained from calculating sums of squares in regular grids of parameter values. Our modelling results showed that transport of fractions of seeds by ants over distances of 1…2 m was indispensable for explaining the observed population spread that led to distances of at most 8 m from population origin within 3 years. Projections of population development over 4 additional years gave a diffusion-like increase of population area without any "outposts". This prediction generated by the simulation model gave a hypothesis which should be revised by additional field observations. Some structural deviations between observations and model output already indicated that for full understanding of population spread the set of dispersal mechanisms assumed in the model may have to be extended by additional features of plant-animal mutualism.}, language = {en} } @misc{HeinkenSchmidtvonOheimbetal.2006, author = {Heinken, Thilo and Schmidt, Marcus and von Oheimb, Goddert and Kriebitzsch, Wolf-Ulrich and Ellenberg, Hermann}, title = {Soil seed banks near rubbing trees indicate dispersal of plant species into forests by wild boar}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-46476}, year = {2006}, abstract = {Current knowledge about processes that generate long-distance dispersal of plants is still limited despite its importance for persistence of populations and colonization of new potential habitats. Today wild large mammals are presumed to be important vectors for long-distance transport of diaspores within and between European temperate forest patches, and in particular wild boars recently came into focus. Here we use a specific habit of wild boar, i.e. wallowing in mud and subsequent rubbing against trees, to evaluate epizoic dispersal of vascular plant diaspores. We present soil seed bank data from 27 rubbing trees versus 27 control trees from seven forest areas in Germany. The mean number of viable seeds and the plant species number were higher in soil samples near rubbing trees compared with control trees. Ten of the 20 most frequent species were more frequent, and many species exclusively appeared in the soil samples near rubbing trees. The large number of plant species and seeds - approximated > 1000 per tree - in the soils near rubbing trees is difficult to explain unless the majority were dispersed by wild boar. Hooked and bristly diaspores, i.e. those adapted to epizoochory, were more frequent, above that many species with unspecialised diaspores occurred exclusively near rubbing trees. Different to plant species closely tied to forest species which occur both in forest and open vegetation, and non-forest species were more frequent near rubbing trees compared with controls. These findings are consistent with previous studies on diaspore loads in the coats and hooves of shot wild boars. However, our method allows to identify the transport of diaspores from the open landscape into forest stands where they might especially emerge after disturbance, and a clustered distribution of epizoochorically dispersed seeds. Moreover, accumulation of seeds of wetness indicators near rubbing trees demonstrates directed dispersal of plant species inhabiting wet places between remote wallows.}, language = {en} }