@article{AlbertAuffretCosynsetal.2015, author = {Albert, Aurelie and Auffret, Alistair G. and Cosyns, Eric and Cousins, Sara A. O. and Eichberg, Carsten and Eycott, Amy E. and Heinken, Thilo and Hoffmann, Maurice and Jaroszewicz, Bogdan and Malo, Juan E. and Marell, Anders and Mouissie, Maarten and Pakeman, Robin J. and Picard, Melanie and Plue, Jan and Poschlod, Peter and Provoost, Sam and Schulze, Kiowa Alraune and Baltzinger, Christophe}, title = {Seed dispersal by ungulates as an ecological filter: a trait-based meta-analysis}, series = {Oikos}, volume = {124}, journal = {Oikos}, number = {9}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.02512}, pages = {1109 -- 1120}, year = {2015}, abstract = {Plant communities are often dispersal-limited and zoochory can be an efficient mechanism for plants to colonize new patches of potentially suitable habitat. We predicted that seed dispersal by ungulates acts as an ecological filter - which differentially affects individuals according to their characteristics and shapes species assemblages - and that the filter varies according to the dispersal mechanism (endozoochory, fur-epizoochory and hoof-epizoochory). We conducted two-step individual participant data meta-analyses of 52 studies on plant dispersal by ungulates in fragmented landscapes, comparing eight plant traits and two habitat indicators between dispersed and non-dispersed plants. We found that ungulates dispersed at least 44\% of the available plant species. Moreover, some plant traits and habitat indicators increased the likelihood for plant of being dispersed. Persistent or nitrophilous plant species from open habitats or bearing dry or elongated diaspores were more likely to be dispersed by ungulates, whatever the dispersal mechanism. In addition, endozoochory was more likely for diaspores bearing elongated appendages whereas epizoochory was more likely for diaspores released relatively high in vegetation. Hoof-epizoochory was more likely for light diaspores without hooked appendages. Fur-epizoochory was more likely for diaspores with appendages, particularly elongated or hooked ones. We thus observed a gradient of filtering effect among the three dispersal mechanisms. Endozoochory had an effect of rather weak intensity (impacting six plant characteristics with variations between ungulate-dispersed and non-dispersed plant species mostly below 25\%), whereas hoof-epizoochory had a stronger effect (eight characteristics included five ones with above 75\% variation), and fur-epizoochory an even stronger one (nine characteristics included six ones with above 75\% variation). Our results demonstrate that seed dispersal by ungulates is an ecological filter whose intensity varies according to the dispersal mechanism considered. Ungulates can thus play a key role in plant community dynamics and have implications for plant spatial distribution patterns at multiple scales.}, language = {en} } @article{BaetenWartonVanCalsteretal.2014, author = {Baeten, Lander and Warton, David I. and Van Calster, Hans and De Frenne, Pieter and Verstraeten, Gorik and Bonte, Dries and Bernhardt-R{\"o}mermann, Markus and Cornelis, Johnny and Decocq, Guillaume and Eriksson, Ove and Hedl, Radim and Heinken, Thilo and Hermy, Martin and Hommel, Patrick and Kirby, Keith J. and Naaf, Tobias and Petrik, Petr and Walther, Gian-Reto and Wulf, Monica and Verheyen, Kris}, title = {A model-based approach to studying changes in compositional heterogeneity}, series = {Methods in ecology and evolution : an official journal of the British Ecological Society}, volume = {5}, journal = {Methods in ecology and evolution : an official journal of the British Ecological Society}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2041-210X}, pages = {156 -- 164}, year = {2014}, language = {en} } @article{BernhardtRoemermannBaetenCravenetal.2015, author = {Bernhardt-R{\"o}mermann, Markus and Baeten, Lander and Craven, Dylan and De Frenne, Pieter and Hedl, Radim and Lenoir, Jonathan and Bert, Didier and Brunet, Jorg and Chudomelova, Marketa and Decocq, Guillaume and Dierschke, Hartmut and Dirnboeck, Thomas and D{\"o}rfler, Inken and Heinken, Thilo and Hermy, Martin and Hommel, Patrick and Jaroszewicz, Bogdan and Keczynski, Andrzej and Kelly, Daniel L. and Kirby, Keith J. and Kopecky, Martin and Macek, Martin and Malis, Frantisek and Mirtl, Michael and Mitchell, Fraser J. G. and Naaf, Tobias and Newman, Miles and Peterken, George and Petrik, Petr and Schmidt, Wolfgang and Standovar, Tibor and Toth, Zoltan and Van Calster, Hans and Verstraeten, Gorik and Vladovic, Jozef and Vild, Ondrej and Wulf, Monika and Verheyen, Kris}, title = {Drivers of temporal changes in temperate forest plant diversity vary across spatial scales}, series = {Global change biology}, volume = {21}, journal = {Global change biology}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.12993}, pages = {3726 -- 3737}, year = {2015}, abstract = {Global biodiversity is affected by numerous environmental drivers. Yet, the extent to which global environmental changes contribute to changes in local diversity is poorly understood. We investigated biodiversity changes in a meta-analysis of 39 resurvey studies in European temperate forests (3988 vegetation records in total, 17-75years between the two surveys) by assessing the importance of (i) coarse-resolution (i.e., among sites) vs. fine-resolution (i.e., within sites) environmental differences and (ii) changing environmental conditions between surveys. Our results clarify the mechanisms underlying the direction and magnitude of local-scale biodiversity changes. While not detecting any net local diversity loss, we observed considerable among-site variation, partly explained by temporal changes in light availability (a local driver) and density of large herbivores (a regional driver). Furthermore, strong evidence was found that presurvey levels of nitrogen deposition determined subsequent diversity changes. We conclude that models forecasting future biodiversity changes should consider coarse-resolution environmental changes, account for differences in baseline environmental conditions and for local changes in fine-resolution environmental conditions.}, language = {en} } @article{CaronDeFrenneBrunetetal.2014, author = {Caron, Maria Mercedes and De Frenne, P. and Brunet, J. and Chabrerie, Olivier and Cousins, S. A. O. and De Backer, L. and Diekmann, M. and Graae, B. J. and Heinken, Thilo and Kolb, A. and Naaf, T. and Plue, J. and Selvi, F. and Strimbeck, G. R. and Wulf, Monika and Verheyen, Kris}, title = {Latitudinal variation in seeds characteristics of Acer platanoides and A. pseudoplatanus}, series = {Plant ecology : an international journal}, volume = {215}, journal = {Plant ecology : an international journal}, number = {8}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-014-0343-x}, pages = {911 -- 925}, year = {2014}, abstract = {Climate change will likely affect population dynamics of numerous plant species by modifying several aspects of the life cycle. Because plant regeneration from seeds may be particularly vulnerable, here we assess the possible effects of climate change on seed characteristics and present an integrated analysis of seven seed traits (nutrient concentrations, samara mass, seed mass, wing length, seed viability, germination percentage, and seedling biomass) of Acer platanoides and A. pseudoplatanus seeds collected along a wide latitudinal gradient from Italy to Norway. Seed traits were analyzed in relation to the environmental conditions experienced by the mother trees along the latitudinal gradient. We found that seed traits of A. platanoides were more influenced by the climatic conditions than those of A. pseudoplatanus. Additionally, seed viability, germination percentage, and seedling biomass of A. platanoides were strongly related to the seed mass and nutrient concentration. While A. platanoides seeds were more influenced by the environmental conditions (generally negatively affected by rising temperatures), compared to A. pseudoplatanus, A. platanoides still showed higher germination percentage and seedling biomass than A. pseudoplatanus. Thus, further research on subsequent life-history stages of both species is needed. The variation in seed quality observed along the climatic gradient highlights the importance of studying the possible impact of climate change on seed production and species demography.}, language = {en} } @article{CaronDeFrenneChabrerieetal.2015, author = {Caron, Maria Mercedes and De Frenne, P. and Chabrerie, Olivier and Cousins, S. A. O. and De Backer, L. and Decocq, G. and Diekmann, M. and Heinken, Thilo and Kolb, A. and Naaf, T. and Plue, J. and Selvi, F. and Strimbeck, G. R. and Wulf, M. and Verheyen, Kris}, title = {Impacts of warming and changes in precipitation frequency on the regeneration of two Acer species}, series = {Flora : morphology, distribution, functional ecology of plants}, volume = {214}, journal = {Flora : morphology, distribution, functional ecology of plants}, publisher = {Elsevier}, address = {Jena}, issn = {0367-2530}, doi = {10.1016/j.flora.2015.05.005}, pages = {24 -- 33}, year = {2015}, language = {en} } @article{CaronDeFrenneBrunetetal.2015, author = {Caron, Maria Mercedes and De Frenne, Pieter and Brunet, J. and Chabrerie, Olivier and Cousins, S. A. O. and De Backer, L. and Decocq, G. and Diekmann, M. and Heinken, Thilo and Kolb, A. and Naaf, T. and Plue, J. and Selvi, Federico and Strimbeck, G. R. and Wulf, Monika and Verheyen, Kris}, title = {Interacting effects of warming and drought on regeneration and early growth of Acer pseudoplatanus and A. platanoides}, series = {Plant biology}, volume = {17}, journal = {Plant biology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1435-8603}, doi = {10.1111/plb.12177}, pages = {52 -- 62}, year = {2015}, abstract = {Climate change is acting on several aspects of plant life cycles, including the sexual reproductive stage, which is considered amongst the most sensitive life-cycle phases. In temperate forests, it is expected that climate change will lead to a compositional change in community structure due to changes in the dominance of currently more abundant forest tree species. Increasing our understanding of the effects of climate change on currently secondary tree species recruitment is therefore important to better understand and forecast population and community dynamics in forests. Here, we analyse the interactive effects of rising temperatures and soil moisture reduction on germination, seedling survival and early growth of two important secondary European tree species, Acer pseudoplatanus and A.platanoides. Additionally, we analyse the effect of the temperature experienced by the mother tree during seed production by collecting seeds of both species along a 2200-km long latitudinal gradient. For most of the responses, A.platanoides showed higher sensitivity to the treatments applied, and especially to its joint manipulation, which for some variables resulted in additive effects while for others only partial compensation. In both species, germination and survival decreased with rising temperatures and/or soil moisture reduction while early growth decreased with declining soil moisture content. We conclude that although A.platanoides germination and survival were more affected after the applied treatments, its initial higher germination and larger seedlings might allow this species to be relatively more successful than A.pseudoplatanus in the face of climate change.}, language = {en} } @article{CaronDeFrenneBrunetetal.2015, author = {Caron, Maria Mercedes and De Frenne, Pieter and Brunet, J{\"o}rg and Chabrerie, Olivier and Cousins, Sara A. O. and Decocq, Guillaume and Diekmann, Martin and Graae, Bente Jessen and Heinken, Thilo and Kolb, Annette and Lenoir, Jonathan and Naaf, Tobias and Plue, Jan and Selvi, Federico and Wulf, Monika and Verheyen, Kris}, title = {Divergent regeneration responses of two closely related tree species to direct abiotic and indirect biotic effects of climate change}, series = {Forest ecology and management}, volume = {342}, journal = {Forest ecology and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2015.01.003}, pages = {21 -- 29}, year = {2015}, abstract = {Changing temperature and precipitation can strongly influence plant reproduction. However, also biotic interactions might indirectly affect the reproduction and recruitment success of plants in the context of climate change. Information about the interactive effects of changes in abiotic and biotic factors is essential, but still largely lacking, to better understand the potential effects of a changing climate on plant populations. Here we analyze the regeneration from seeds of Acer platanoides and Acer pseudoplatanus, two currently secondary forest tree species from seven regions along a 2200 km-wide latitudinal gradient in Europe. We assessed the germination, seedling survival and growth during two years in a common garden experiment where temperature, precipitation and competition with the understory vegetation were manipulated. A. platanoides was more sensitive to changes in biotic conditions while A. pseudoplatanus was affected by both abiotic and biotic changes. In general, competition reduced (in A. platanoides) and warming enhanced (in A. pseudoplatanus) germination and survival, respectively. Reduced competition strongly increased the growth of A. platanoides seedlings. Seedling responses were independent of the conditions experienced by the mother tree during seed production and maturation. Our results indicate that, due to the negative effects of competition on the regeneration of A. platanoides, it is likely that under stronger competition (projected under future climatic conditions) this species will be negatively affected in terms of germination, survival and seedling biomass. Climate-change experiments including both abiotic and biotic factors constitute a key step forward to better understand the response of tree species' regeneration to climate change. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{DeFrenneKolbGraaeetal.2011, author = {De Frenne, P. and Kolb, Annette and Graae, Benete Jessen and Decocq, Guillaume and Baltora, S. and De Schrijver, A. and Brunet, J. and Chabrerie, Olivier and Cousins, Sara A. O. and Dhondt, Rob and Diekmann, Martin and Gruwez, R. and Heinken, Thilo and Hermy, Martin and Liira, J. and Saguez, R. and Shevtsova, Anna and Baskin, Carol C. and Verheyen, Kris}, title = {A latitudinal gradient in seed nutrients of the forest herb Anemone nemorosa}, series = {Plant biology}, volume = {13}, journal = {Plant biology}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1435-8603}, doi = {10.1111/j.1438-8677.2010.00404.x}, pages = {493 -- 501}, year = {2011}, abstract = {The nutrient concentration in seeds determines many aspects of potential success of the sexual reproductive phase of plants, including the seed predation probability, efficiency of seed dispersal and seedling performance. Despite considerable research interest in latitudinal gradients of foliar nutrients, a similar gradient for seeds remains unexplored. We investigated a potential latitudinal gradient in seed nutrient concentrations within the widespread European understorey forest herb Anemone nemorosa L. We sampled seeds of A. nemorosa in 15 populations along a 1900-km long latitudinal gradient at three to seven seed collection dates post-anthesis and investigated the relative effects of growing degree-hours > 5 degrees C, soil characteristics and latitude on seed nutrient concentrations. Seed nitrogen, nitrogen:phosphorus ratio and calcium concentration decreased towards northern latitudes, while carbon:nitrogen ratios increased. When taking differences in growing degree-hours and measured soil characteristics into account and only considering the most mature seeds, the latitudinal decline remained particularly significant for seed nitrogen concentration. We argue that the decline in seed nitrogen concentration can be attributed to northward decreasing seed provisioning due to lower soil nitrogen availability or greater investment in clonal reproduction. This pattern may have large implications for the reproductive performance of this forest herb as the degree of seed provisioning ultimately co-determines seedling survival and reproductive success.}, language = {en} } @article{DeFrenneBlondeelBrunetetal.2018, author = {De Frenne, Pieter and Blondeel, H. and Brunet, J. and Caron, M. M. and Chabrerie, O. and Cougnon, M. and Cousins, S. A. O. and Decocq, G. and Diekmann, M. and Graae, B. J. and Hanley, M. E. and Heinken, Thilo and Hermy, M. and Kolb, A. and Lenoir, J. and Liira, J. and Orczewska, A. and Shevtsova, A. and Vanneste, T. and Verheyen, K.}, title = {Atmospheric nitrogen deposition on petals enhances seed quality of the forest herb Anemone nemorosa}, series = {Plant biology}, volume = {20}, journal = {Plant biology}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1435-8603}, doi = {10.1111/plb.12688}, pages = {619 -- 626}, year = {2018}, abstract = {Elevated atmospheric input of nitrogen (N) is currently affecting plant biodiversity and ecosystem functioning. The growth and survival of numerous plant species is known to respond strongly to N fertilisation. Yet, few studies have assessed the effects of N deposition on seed quality and reproductive performance, which is an important life-history stage of plants. Here we address this knowledge gap by assessing the effects of atmospheric N deposition on seed quality of the ancient forest herb Anemone nemorosa using two complementary approaches. By taking advantage of the wide spatiotemporal variation in N deposition rates in pan-European temperate and boreal forests over 2years, we detected positive effects of N deposition on the N concentration (percentage N per unit seed mass, increased from 2.8\% to 4.1\%) and N content (total N mass per seed more than doubled) of A.nemorosa seeds. In a complementary experiment, we applied ammonium nitrate to aboveground plant tissues and the soil surface to determine whether dissolved N sources in precipitation could be incorporated into seeds. Although the addition of N to leaves and the soil surface had no effect, a concentrated N solution applied to petals during anthesis resulted in increased seed mass, seed N concentration and N content. Our results demonstrate that N deposition on the petals enhances bioaccumulation of N in the seeds of A.nemorosa. Enhanced atmospheric inputs of N can thus not only affect growth and population dynamics via root or canopy uptake, but can also influence seed quality and reproduction via intake through the inflorescences.}, language = {en} } @article{DeFrenneBrunetShevtsovaetal.2011, author = {De Frenne, Pieter and Brunet, Jorg and Shevtsova, Anna and Kolb, Annette and Graae, Bente J. and Chabrerie, Olivier and Cousins, Sara Ao and Decocq, Guillaume and De Schrijver, An and Diekmann, Martin and Gruwez, Robert and Heinken, Thilo and Hermy, Martin and Nilsson, Christer and Stanton, Sharon and Tack, Wesley and Willaert, Justin and Verheyen, Kris}, title = {Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient}, series = {Global change biology}, volume = {17}, journal = {Global change biology}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/j.1365-2486.2011.02449.x}, pages = {3240 -- 3253}, year = {2011}, abstract = {Slow-colonizing forest understorey plants are probably not able to rapidly adjust their distribution range following large-scale climate change. Therefore, the acclimation potential to climate change within their actual occupied habitats will likely be key for their short-and long-term persistence. We combined transplant experiments along a latitudinal gradient with open-top chambers to assess the effects of temperature on phenology, growth and reproductive performance of multiple populations of slow-colonizing understorey plants, using the spring flowering geophytic forb Anemone nemorosa and the early summer flowering grass Milium effusum as study species. In both species, emergence time and start of flowering clearly advanced with increasing temperatures. Vegetative growth (plant height, aboveground biomass) and reproductive success (seed mass, seed germination and germinable seed output) of A. nemorosa benefited from higher temperatures. Climate warming may thus increase future competitive ability and colonization rates of this species. Apart from the effects on phenology, growth and reproductive performance of M. effusum generally decreased when transplanted southwards (e. g., plant size and number of individuals decreased towards the south) and was probably more limited by light availability in the south. Specific leaf area of both species increased when transplanted southwards, but decreased with open-top chamber installation in A. nemorosa. In general, individuals of both species transplanted at the home site performed best, suggesting local adaptation. We conclude that contrasting understorey plants may display divergent plasticity in response to changing temperatures which may alter future understorey community dynamics.}, language = {en} } @article{DeFrenneGraaeBrunetetal.2012, author = {De Frenne, Pieter and Graae, Bente J. and Brunet, J{\"o}rg and Shevtsova, Anna and De Schrijver, An and Chabrerie, Olivier and Cousins, Sara A. O. and Decocq, Guillaume and Diekmann, Martin and Hermy, Martin and Heinken, Thilo and Kolb, Annette and Nilsson, Christer and Stanton, Sharon and Verheyen, Kris}, title = {The response of forest plant regeneration to temperature variation along a latitudinal gradient}, series = {Annals of botany}, volume = {109}, journal = {Annals of botany}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0305-7364}, doi = {10.1093/aob/mcs015}, pages = {1037 -- 1046}, year = {2012}, abstract = {The response of forest herb regeneration from seed to temperature variations across latitudes was experimentally assessed in order to forecast the likely response of understorey community dynamics to climate warming. Seeds of two characteristic forest plants (Anemone nemorosa and Milium effusum) were collected in natural populations along a latitudinal gradient from northern France to northern Sweden and exposed to three temperature regimes in growth chambers (first experiment). To test the importance of local adaptation, reciprocal transplants were also made of adult individuals that originated from the same populations in three common gardens located in southern, central and northern sites along the same gradient, and the resulting seeds were germinated (second experiment). Seedling establishment was quantified by measuring the timing and percentage of seedling emergence, and seedling biomass in both experiments. Spring warming increased emergence rates and seedling growth in the early-flowering forb A. nemorosa. Seedlings of the summer-flowering grass M. effusum originating from northern populations responded more strongly in terms of biomass growth to temperature than southern populations. The above-ground biomass of the seedlings of both species decreased with increasing latitude of origin, irrespective of whether seeds were collected from natural populations or from the common gardens. The emergence percentage decreased with increasing home-away distance in seeds from the transplant experiment, suggesting that the maternal plants were locally adapted. Decreasing seedling emergence and growth were found from the centre to the northern edge of the distribution range for both species. Stronger responses to temperature variation in seedling growth of the grass M. effusum in the north may offer a way to cope with environmental change. The results further suggest that climate warming might differentially affect seedling establishment of understorey plants across their distribution range and thus alter future understorey plant dynamics.}, language = {en} } @article{DeFrenneGraaeKolbetal.2011, author = {De Frenne, Pieter and Graae, Bente J. and Kolb, Annette and Shevtsova, Anna and Baeten, Lander and Brunet, J{\"o}rg and Chabrerie, Olivier and Cousins, Sara A. O. and Decocq, Guillaume and Dhondt, Rob and Diekmann, Martin and Gruwez, Robert and Heinken, Thilo and Hermy, Martin and Oster, Mathias and Saguez, Robert and Stanton, Sharon and Tack, Wesley and Vanhellemont, Margot and Verheyen, Kris}, title = {An intraspecific application of the leaf-height-seed ecology strategy scheme to forest herbs along a latitudinal gradient}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {34}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2010.06399.x}, pages = {132 -- 140}, year = {2011}, abstract = {We measured LHS traits in 41 Anemone nemorosa and 44 Milium effusum populations along a 1900-2300 km latitudinal gradient from N France to N Sweden. We then applied multilevel models to identify the effects of regional (temperature, latitude) and local (soil fertility and acidity, overstorey canopy cover) environmental factors on LHS traits. Both species displayed a significant 4\% increase in plant height with every degree northward shift (almost a two-fold plant height difference between the southernmost and northernmost populations). Neither seed mass nor SLA showed a significant latitudinal cline. Temperature had a large effect on the three LHS traits of Anemone. Latitude, canopy cover and soil nutrients were related to the SLA and plant height of Milium. None of the investigated variables appeared to be related to the seed mass of Milium. The variation in LHS traits indicates that the ecological strategy determined by the position of each population in this three-factor triangle is not constant along the latitudinal gradient. The significant increase in plant height suggests greater competitive abilities for both species in the northernmost populations. We also found that the studied environmental factors affected the LHS traits of the two species on various scales: spring-flowering Anemone was affected more by temperature, whereas early-summer flowering Milium was affected more by local and other latitude-related factors. Finally, previously reported cross-species correlations between LHS traits and latitude were generally unsupported by our within-species approach.}, language = {en} } @article{deFrenneGraaeKolbetal.2010, author = {de Frenne, Pieter and Graae, Bente Jessen and Kolb, Annette and Brunet, J{\"o}rg and Chabrerie, Olivier and Cousins, Sara A. O. and Decocq, Guillaume and Dhondt, Rob and Diekmann, Martin and Eriksson, Olof and Heinken, Thilo and Hermy, Martin and J{\"o}gar, uelle and Saguez, Robert and Shevtsova, Anna and Stanton, Sharon and Zindel, Renate and Zobel, Martin and Verheyen, Kris}, title = {Significant effects of temperature on the reproductive output of the forest herb Anemone nemorosa L.}, issn = {0378-1127}, doi = {10.1016/j.foreco.2009.04.038}, year = {2010}, abstract = {Climate warming is already influencing plant migration in different parts of the world. Numerous models have been developed to forecast future plant distributions. Few studies, however, have investigated the potential effect of warming on the reproductive output of plants. Understorey forest herbs in particular, have received little attention in the debate on climate change impacts. This study focuses on the effect of temperature on sexual reproductive output (number of seeds, seed mass, germination percentage and seedling mass) of Anemone nemorosa L., a model species for slow colonizing herbaceous forest plants. We sampled seeds of A. nemorosa in populations along a 2400 km latitudinal gradient from northern France to northern Sweden during three growing seasons (2005,2006 and 2008). This study design allowed us to isolate the effects of accumulated temperature (Growing Degree Hours; GDH) from latitude and the local abiotic and biotic environment. Germination and seed sowing trials were performed in incubators, a greenhouse and under field conditions in a forest. Finally, we disentangled correlations between the different reproductive traits of A. nemorosa along the latitudinal gradient. We found a clear positive relationship between accumulated temperature and seed and seedling traits: reproductive output of A. nemorosa improved with increasing GDH along the latitudinal gradient. Seed mass and seedling mass, for instance, increased by 9.7\% and 10.4\%, respectively, for every 1000 degrees C h increase in GDH. We also derived strong correlations between several seed and seedling traits both under field conditions and in incubators. Our results indicate that seed mass, incubator-based germination percentage (Germ\%(Inc)) and the output of germinable seeds (product of number of seeds and Germ\%(Inc) divided by 100) from plants grown along a latitudinal gradient (i.e. at different temperature regimes) provide valuable proxies to parameterize key population processes in models. We conclude that (1) climate warming may have a pronounced positive impact on sexual reproduction of A. nemorosa and (2) climate models forecasting plant distributions would benefit from including the temperature sensitivity of key seed traits and population processes.}, language = {en} } @article{deFrenneKolbVerheyenetal.2009, author = {de Frenne, Pieter and Kolb, Annette and Verheyen, Kris and Brunet, Johanne and Chabrerie, Olivier and Decocq, Guillaume and Diekmann, Martin and Eriksson, Ove and Heinken, Thilo and Hermy, Martin and J{\~o}gar, {\"U}lle and Stanton, Sara and Quataert, Paul and Zindel, Renate and Zobel, Martin and Graae, Bente Jessen}, title = {Unravelling the effects of temperature, latitude and local environment on the reproduction of forest herbs}, issn = {1466-822X}, doi = {10.1111/j.1466-8238.2009.00487.x}, year = {2009}, abstract = {Aim To investigate the effect of temperature, latitude and local environment on the reproductive traits of widespread perennial forest herbs to better understand the potential impacts of rising temperatures on their population dynamics and colonization capacities. Location Six regions along a latitudinal gradient from France to Sweden. Methods Within each region, we collected data from three to five populations of up to six species. For each species, several variables were recorded in each region (temperature, latitude) and population (local abiotic and biotic environmental variables), and seed production and germination were estimated. Resource investment in reproduction (RIR) was quantified as seed number ¥ seed mass, while germinable seed output (GSO) was expressed as seed number ¥ germination percentage.We performed linear regression and mixed effect models to investigate the effects of temperature (growing degree hours), latitude and local abiotic and biotic environment on RIR and GSO. Results Temperature and latitude explained most of the variation in RIR and GSO for early flowering species with a northerly distribution range edge (Anemone nemorosa, Paris quadrifolia and Oxalis acetosella). Reproduction of the more southerly distributed species (Brachypodium sylvaticum, Circaea lutetiana and Primula elatior), in contrast, was independent of temperature/latitude. In the late summer species, B. sylvaticum and C. lutetiana, variation in RIR and GSO was best explained by local environmental variables, while none of the investigated variables appeared to be related to reproduction in P. elatior. Main conclusions We showed that reproduction of only two early flowering, northerly distributed species was related to temperature. This suggests that the potential reproductive response of forest herbs to climate warming partly depends on their phenology and distribution, but also that the response is to some extent species dependent. These findings should be taken into account when predictions about future shifts in distribution range are made.}, language = {en} } @article{DeFrenneRodriguezSanchezCoomesetal.2013, author = {De Frenne, Pieter and Rodriguez-Sanchez, Francisco and Coomes, David Anthony and B{\"a}ten, Lander and Verstr{\"a}ten, Gorik and Vellend, Mark and Bernhardt-R{\"o}mermann, Markus and Brown, Carissa D. and Brunet, J{\"o}rg and Cornelis, Johnny and Decocq, Guillaume M. and Dierschke, Hartmut and Eriksson, Ove and Gilliam, Frank S. and Hedl, Radim and Heinken, Thilo and Hermy, Martin and Hommel, Patrick and Jenkins, Michael A. and Kelly, Daniel L. and Kirby, Keith J. and Mitchell, Fraser J. G. and Naaf, Tobias and Newman, Miles and Peterken, George and Petrik, Petr and Schultz, Jan and Sonnier, Gregory and Van Calster, Hans and Waller, Donald M. and Walther, Gian-Reto and White, Peter S. and Woods, Kerry D. and Wulf, Monika and Graae, Bente Jessen and Verheyen, Kris}, title = {Microclimate moderates plant responses to macroclimate warming}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {110}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {46}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1311190110}, pages = {18561 -- 18565}, year = {2013}, abstract = {Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass-e.g., for bioenergy-may open forest canopies and accelerate thermophilization of temperate forest biodiversity.}, language = {en} } @article{DeLombaerdeVerheyenPerringetal.2018, author = {De Lombaerde, Emiel and Verheyen, Kris and Perring, Michael P. and Bernhardt-Roemermann, Markus and Van Calster, Hans and Brunet, Jorg and Chudomelova, Marketa and Decocq, Guillaume and Diekmann, Martin and Durak, Tomasz and Hedl, Radim and Heinken, Thilo and Hommel, Patrick and Jaroszewicz, Bogdan and Kopecky, Martin and Lenoir, Jonathan and Macek, Martin and M{\´a}liš, František and Mitchell, Fraser J. G. and Naaf, Tobias and Newman, Miles and Petř{\´i}k, Petr and Reczyńska, Kamila and Schmidt, Wolfgang and Swierkosz, Krzysztof and Vild, Ondrej and Wulf, Monika and Baetena, Lander}, title = {Responses of competitive understorey species to spatial environmental gradients inaccurately explain temporal changes}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {30}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, publisher = {Elsevier GMBH}, address = {M{\"u}nchen}, issn = {1439-1791}, doi = {10.1016/j.baae.2018.05.013}, pages = {52 -- 64}, year = {2018}, abstract = {Understorey plant communities play a key role in the functioning of forest ecosystems. Under favourable environmental conditions, competitive understorey species may develop high abundances and influence important ecosystem processes such as tree regeneration. Thus, understanding and predicting the response of competitive understorey species as a function of changing environmental conditions is important for forest managers. In the absence of sufficient temporal data to quantify actual vegetation changes, space-for-time (SFT) substitution is often used, i.e. studies that use environmental gradients across space to infer vegetation responses to environmental change over time. Here we assess the validity of such SFT approaches and analysed 36 resurvey studies from ancient forests with low levels of recent disturbances across temperate Europe to assess how six competitive understorey plant species respond to gradients of overstorey cover, soil conditions, atmospheric N deposition and climatic conditions over space and time. The combination of historical and contemporary surveys allows (i) to test if observed contemporary patterns across space are consistent at the time of the historical survey, and, crucially, (ii) to assess whether changes in abundance over time given recorded environmental change match expectations from patterns recorded along environmental gradients in space. We found consistent spatial relationships at the two periods: local variation in soil variables and overstorey cover were the best predictors of individual species' cover while interregional variation in coarse-scale variables, i.e. N deposition and climate, was less important. However, we found that our SFT approach could not accurately explain the large variation in abundance changes over time. We thus recommend to be cautious when using SFT substitution to infer species responses to temporal changes.}, language = {en} } @article{DiekmannAndresBeckeretal.2019, author = {Diekmann, Martin and Andres, Christian and Becker, Thomas and Bennie, Jonathan and Blueml, Volker and Bullock, James M. and Culmsee, Heike and Fanigliulo, Miriam and Hahn, Annett and Heinken, Thilo and Leuschner, Christoph and Luka, Stefanie and Meissner, Justus and M{\"u}ller, Josef and Newton, Adrian and Peppler-Lisbach, Cord and Rosenthal, Gert and van den Berg, Leon J. L. and Vergeer, Philippine and Wesche, Karsten}, title = {Patterns of long-term vegetation change vary between different types of semi-natural grasslands in Western and Central Europe}, series = {Journal of vegetation science}, volume = {30}, journal = {Journal of vegetation science}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1100-9233}, doi = {10.1111/jvs.12727}, pages = {187 -- 202}, year = {2019}, abstract = {Questions Has plant species richness in semi-natural grasslands changed over recent decades? Do the temporal trends of habitat specialists differ from those of habitat generalists? Has there been a homogenization of the grassland vegetation? Location Different regions in Germany and the UK. Methods We conducted a formal meta-analysis of re-survey vegetation studies of semi-natural grasslands. In total, 23 data sets were compiled, spanning up to 75 years between the surveys, including 13 data sets from wet grasslands, six from dry grasslands and four from other grassland types. Edaphic conditions were assessed using mean Ellenberg indicator values for soil moisture, nitrogen and pH. Changes in species richness and environmental variables were evaluated using response ratios. Results In most wet grasslands, total species richness declined over time, while habitat specialists almost completely vanished. The number of species losses increased with increasing time between the surveys and were associated with a strong decrease in soil moisture and higher soil nutrient contents. Wet grasslands in nature reserves showed no such changes or even opposite trends. In dry grasslands and other grassland types, total species richness did not consistently change, but the number or proportions of habitat specialists declined. There were also considerable changes in species composition, especially in wet grasslands that often have been converted into intensively managed, highly productive meadows or pastures. We did not find a general homogenization of the vegetation in any of the grassland types. Conclusions The results document the widespread deterioration of semi-natural grasslands, especially of those types that can easily be transformed to high production grasslands. The main causes for the loss of grassland specialists are changed management in combination with increased fertilization and nitrogen deposition. Dry grasslands are most resistant to change, but also show a long-term trend towards an increase in more mesotrophic species.}, language = {en} } @article{DiekmannMuellerHeinkenetal.2015, author = {Diekmann, Martin and M{\"u}ller, Josef and Heinken, Thilo and Dupre, Cecilia}, title = {Survey and statistical analysis of plant reintroductions in Germany}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {35}, publisher = {Floristisch-Soziologische Arbeitsgemeinschaft}, address = {G{\"o}ttingen}, issn = {0722-494X}, pages = {249 -- 265}, year = {2015}, abstract = {Aim - Plant reintroductions and other forms of targeted species translocations will in the future gain growing importance for nature conservation. In fragmented habitats, species reintroductions offer one of the most efficient tools for preserving or restoring plant diversity. In our study, we have compiled available data about plant reintroduction projects in Germany to answer the following questions: (1) What are the characteristics, habitat preferences and ecological strategies of species considered in plant reintroduction trials, and are these representative of the entire class of threatened species in Germany? (2) Is the judgment of the success or failure of plant reintroductions biased by the choice of species used in the experiments? (3) Do reintroduction efforts focus on those species for which Germany has a particularly high responsibility for conservation? Methods - Information about reintroduction projects in Germany were obtained from published and internet sources as well as unpublished reports. In our search we focused on single-species trials in the framework of scientific or conservation projects. For all threatened species included in our database, we compiled information on their systematics, life form, ecological strategies and habitat preferences. A list of all species being threatened nationally or regionally, comprising both reintroduced and not reintroduced species, served as a reference for statistical analysis. Results - The list of vascular plants used in conservation-oriented reintroductions consisted of 196 taxa. Species of families with large and conspicuous, mostly insect-pollinated flowers (for example, Orchidaceae) were over-represented among the reintroduced species compared to those threatened species not included in reintroduction trials. Species considered were also more often than expected found in semi-natural open habitats such as heathlands and grasslands. Notably, many projects focused on calcareous grasslands, characterized by dry, high-pH and infertile soils. In contrast, species of more near-natural vegetation (alpine and rocky formations, forests) were under-represented. About 25\% of the species that were reintroduced are not threatened on the national scale. Out of 150 species for which Germany has a particularly high responsibility for conservation, only 14 (9.3\%) were reintroduced. For only about 1/3 of all reintroduction attempts, success or failure were documented; whereas the success rate appears to be relatively low in nutrient-poor environments, trials with nutrient-demanding and competitive species were more successful. Conclusions - We conclude that conservation-oriented reintroduction attempts should focus more on species for which the country or a region has a particular high responsibility. Reintroductions, to a larger extent than at present, also need to consider the different chances of success in different habitat types and environments.}, language = {de} } @misc{DierschkeHeinken2019, author = {Dierschke, Hartmut and Heinken, Thilo}, title = {Vorwort}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {39}, publisher = {Floristisch-Soziologische Arbeitsgemeinschaft}, address = {G{\"o}ttingen}, issn = {0722-494X}, pages = {7 -- 7}, year = {2019}, language = {de} } @article{DittmannHeinkenSchmidt2018, author = {Dittmann, Thea and Heinken, Thilo and Schmidt, Marcus}, title = {Die W{\"a}lder von Magdeburgerforth (Fl{\"a}ming, Sachsen-Anhalt)}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {38}, publisher = {Floristisch-Soziologische Arbeitsgemeinschaft}, address = {G{\"o}ttingen}, issn = {0722-494X}, doi = {10.14471/2018.38.009}, pages = {11 -- 42}, year = {2018}, abstract = {In einem rund 2.200 ha großen Waldgebiet bei Magdeburgerforth (Fl{\"a}ming, Sachsen-Anhalt) wurden 1948 bis 1950 von Harro Passarge 120 Vegetationsaufnahmen sowie eine Vegetationskartierung erstellt. Das Gebiet zeichnet sich durch eine große Vielfalt an Waldtypen aus den Verb{\"a}nden Agrostio-Quercion petraeae, Alnion glutinosae, Alnion incanae, Carpinion betuli, Dicrano-Pinion und Quercion roboris aus. Daher und weil viele der heute in W{\"a}ldern wirksamen Prozesse (z. B. Stickstoffeintrag, Klimawandel) vor 60 Jahren noch nicht sp{\"u}rbar waren, bietet sich das Gebiet f{\"u}r eine Wiederholungsuntersuchung besonders an. Da die Aufnahmefl{\"a}chen von Passarge nicht punktgenau verortet waren, wurden im Jahr 2014 in einem {\"u}ber die Forstabteilungen und die Vegetationskarte definierten Suchraum immer die der Erstaufnahme {\"a}hnlichsten Waldbest{\"a}nde erfasst. Insgesamt konnten 97 (81 \%) der Aufnahmen wiederholt werden. Vegetationsver{\"a}nderungen werden mithilfe einer NMDS-Ordination, der Gegen{\"u}berstellung von α -Diversit{\"a}t, Zeigerwerten und Waldbindungskategorien f{\"u}r die beiden Aufnahmezeitpunkte sowie {\"u}ber die Identifikation von Gewinner- und Verlierer-Arten analysiert. Auch wenn methodenbedingt bei der Wiederholungsuntersuchung nur die jeweils geringstm{\"o}gliche Vegetationsver{\"a}nderung abgebildet wird, konnten Ergebnisse erzielt werden, die mit denen quasi permanenter Plots {\"u}bereinstimmen. Die beobachteten allgemeinen Trends (Eutrophierung, Sukzession nach Nutzungswandel, Verlust lichtliebender und magerkeitszeigender Arten, Ausbreitung von stickstoffliebenden Arten und mesophilen Waldarten, Einwanderung von Neophyten, keine generelle Abnahme der Artenzahl) stimmen gut mit den in zahlreichen Studien aus mitteleurop{\"a}ischen W{\"a}ldern festgestellten {\"u}berein. Durch das von nassen bis trockenen sowie von bodensauer-n{\"a}hrstoffarmen bis zu relativ basenreichen B{\"o}den reichende Standortsspektrum innerhalb des Untersuchungsgebietes konnte aber - deutlicher als in den meisten bisherigen Fallstudien - gezeigt werden, dass sich die Resilienz der W{\"a}lder gegen{\"u}ber Vegetationsver{\"a}nderung je nach Ausgangsgesellschaft stark unterscheidet und jeweils unterschiedliche Treiber wirksam sind. Stellario-Carpinetum und Luzulo-Quercetum erwiesen sich als relativ stabil, und auch in den Feuchtw{\"a}ldern des Circaeo-Alnetum gab es trotz eines Artenwechsels wenig Hinweise auf Umweltver{\"a}nderungen. Dagegen wiesen die W{\"a}lder n{\"a}hrstoffarmer Standorte (Sphagno-Alnetum, Betulo-Quercetum, Dicrano-Pinion) viele Verliererarten und eine starke Eutrophierungstendenz auf. Die in besonderem Maße von historischen Waldnutzungsformen abh{\"a}ngigen thermophilen W{\"a}lder und die Flechten-Kiefernw{\"a}lder gingen weitgehend verloren.}, language = {de} }