@book{Taubert2007, author = {Taubert, Andreas}, title = {Ionische Fl{\"u}ssigkeiten : chemische Kuriosa oder sind sie doch recht n{\"u}tzlich? ; Antrittsvorlesung 2007-05-24}, publisher = {Univ.-Bibl.}, address = {Potsdam}, year = {2007}, abstract = {Klassischerweise haben Salze, beispielsweise Kochsalz, Schmelzpunkte von einigen hundert Grad Celsius und mehr. Ionische Fl{\"u}ssigkeiten sind dagegen Salze, deren Schmelzpunkt zum Teil weit unter der Raumtemperatur liegt. Sie sind daher bei Raumtemperatur fl{\"u}ssig. Obwohl ionische Fl{\"u}ssigkeiten seit 1914 bekannt sind, hatten sie bis vor 15 Jahren keinerlei Bedeutung. Heute jedoch werden ionische Fl{\"u}ssigkeiten aufgrund ihrer vorteilhaften Eigenschaften, wie hohe Leitf{\"a}higkeit oder hohe Temperaturstabilit{\"a}t, unter anderem zur Papierverarbeitung oder in flexiblen Solarzellen eingesetzt. Die Antrittsvorlesung wird sich insbesondere mit der Herstellung anorganischer Partikel befassen und zeigen, wie ionische Fl{\"u}ssigkeiten zur Herstellung neuer Materialien f{\"u}r verschiedene Anwendungen genutzt werden k{\"o}nnen.}, language = {de} } @misc{BleekTaubert2013, author = {Bleek, Katrin and Taubert, Andreas}, title = {New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution}, series = {Acta biomaterialia}, volume = {9}, journal = {Acta biomaterialia}, number = {5}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2012.12.027}, pages = {6283 -- 6321}, year = {2013}, abstract = {The polymer-controlled and bioinspired precipitation of inorganic minerals from aqueous solution at near-ambient or physiological conditions avoiding high temperatures or organic solvents is a key research area in materials science. Polymer-controlled mineralization has been studied as a model for biomineralization and for the synthesis of (bioinspired and biocompatible) hybrid materials for a virtually unlimited number of applications. Calcium phosphate mineralization is of particular interest for bone and dental repair. Numerous studies have therefore addressed the mineralization of calcium phosphate using a wide variety of low- and high-molecular-weight additives. In spite of the growing interest and increasing number of experimental and theoretical data, the mechanisms of polymer-controlled calcium phosphate mineralization are not entirely clear to date, although the field has made significant progress in the last years. A set of elegant experiments and calculations has shed light on some details of mineral formation, but it is currently not possible to preprogram a mineralization reaction to yield a desired product for a specific application. The current article therefore summarizes and discusses the influence of (macro)molecular entities such as polymers, peptides, proteins and gels on biomimetic calcium phosphate mineralization from aqueous solution. It focuses on strategies to tune the kinetics, morphologies, final dimensions and crystal phases of calcium phosphate, as well as on mechanistic considerations.}, language = {en} } @article{ShkilnyyBrandtMantionetal.2009, author = {Shkilnyy, Andriy and Brandt, Jessica and Mantion, Alexandre and Paris, Oskar and Schlaad, Helmut and Taubert, Andreas}, title = {Calcium phosphate with a channel-like morphology by polymer templating}, issn = {0897-4756}, doi = {10.1021/Cm803244z}, year = {2009}, abstract = {Calcium phosphate mineralization from aqueous solution in the presence of organic growth modifiers has been intensely studied in the recent past. This is mostly due to potential applications of the resulting composites in the biomaterials field. Polymers in particular are efficient growth modifiers. As a result, there has been a large amount of work on polymeric growth modifiers. Interestingly, however, relatively little work has been done on polycationic additives. The current paper shows that poly(ethylene oxide)b-poly(L-lysine) block copolymers lead to an interesting morphology of calcium phosphate precipitated at room temperature and subjected to a mild heat treatment at 85 degrees C. Electron microscopy, synchrotron X-ray diffraction, and porosity analysis show that a (somewhat) porous material with channel-like features forms. Closer inspection using transmission electron microscopy shows that the channels are probably not real channels. Much rather the morphology is the result of the aggregation of ca. 100-nm-sized rodlike primary particles, which changes upon drying to exhibit the observed channel-like features. Comparison experiments conducted in the absence of polymer and with poly(ethylene oxide)-b-poly(L-glutamate) show that these features only form in the presence of the polycationic poly(L-lysine) block, suggesting a distinct interaction of the polycation with either the crystal or the phosphate ions prior to mineralization.}, language = {en} } @article{BagdahnTaubert2013, author = {Bagdahn, Christian and Taubert, Andreas}, title = {Ionogel fiber mats - functional materials via electrospinning of PMMA and the ionic liquid bis(1-butyl-3-methyl-imidazolium) Tetrachloridocuprate(II), [Bmim](2)[CuCl4]}, series = {Zeitschrift f{\"u}r Naturforschung : B, Chemical sciences}, volume = {68}, journal = {Zeitschrift f{\"u}r Naturforschung : B, Chemical sciences}, number = {10}, publisher = {De Gruyter}, address = {T{\"u}bingen}, issn = {0932-0776}, doi = {10.5560/ZNB.2013-3195}, pages = {1163 -- 1171}, year = {2013}, abstract = {Ionogel fiber mats were made by electrospinning poly(methylmethacrylate) (PMMA) and the ionic liquid (IL) bis(1-butyl-3-methyl-imidazolium) tetrachloridocupraten, [Bmim](2)[CuCl4], from acetone. The morphology of the electrospun ionogels strongly depends on the spinning parameters. Dense and uniform fiber mats were only obtained at concentrations of 60 to 70 g of polymer and IL mass combined. Lower concentrations led to a low number of poorly defined fibers. High voltages of 20 to 25 kV led to well-defined and uniform fibers; voltages between 15 and 20 kV again led to less uniform and less dense fibers. At 10 kV and lower, no spinning could be induced. Finally, PMMA fibers electrospun without IL show a less well-defined morphology combining fibers and oblong droplets indicating that the IL has a beneficial effect on the electrospinning process. The resulting materials are prototypes for new functional materials, for example in sterile filtration.}, language = {en} } @article{AyiKhareStrauchetal.2010, author = {Ayi, Ayi A. and Khare, Varsha and Strauch, Peter and Girard, J{\`e}r{\^o}me and Fromm, Katharina M. and Taubert, Andreas}, title = {On the chemical synthesis of titanium nanoparticles from ionic liquids}, issn = {0026-9247}, doi = {10.1007/s00706-010-0403-4}, year = {2010}, abstract = {We report on attempts towards the synthesis of titanium nanoparticles using a wet chemical approach in imidazolium-based ionic liquids (ILs) under reducing conditions. Transmission electron microscopy finds nanoparticles in all cases. UV/Vis spectroscopy confirms the nanoparticulate nature of the precipitate, as in all cases an absorption band between ca. 280 and 300 nm is visible. IR spectroscopy shows that even after extensive washing and drying, some IL remains adsorbed on the nanoparticles. Raman spectroscopy suggests the formation of anatase nanoparticles, but X-ray diffraction reveals that, possibly, amorphous titania forms or that the nanoparticles are so small that a clear structure assignment is not possible. The report thus shows that (possibly amorphous) titanium oxides even form under reducing conditions and that the chemical synthesis of titanium nanoparticles in ILs remains elusive.}, language = {en} } @misc{BleekTaubert2013, author = {Bleek, Katrin and Taubert, Andreas}, title = {New developments in polymer-controlled, bio-inspired calcium phosphate mineralization from aqueous solution}, series = {Acta biomaterialia}, volume = {9}, journal = {Acta biomaterialia}, number = {9}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2013.05.007}, pages = {8466 -- 8466}, year = {2013}, language = {en} } @article{ZiolkowskiBleekTwamleyetal.2012, author = {Ziolkowski, Bartosz and Bleek, Katrin and Twamley, Brendan and Fraser, Kevin J. and Byrne, Robert and Diamond, Dermot and Taubert, Andreas}, title = {Magnetic ionogels (MagIGs) based on iron oxide nanoparticles, poly(N-isopropylacrylamide), and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {32}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201200597}, pages = {5245 -- 5251}, year = {2012}, abstract = {Magnetic ionogels (MagIGs) were prepared from organosilane-coated iron oxide nanoparticles, N-isopropylacrylamide, and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide. The ionogels prepared with the silane-modified nanoparticles are more homogeneous than ionogels prepared with unmodified magnetite particles. The silane-modified particles are immobilized in the ionogel and are resistant tonanoparticle leaching. The modified particles also render the ionogels mechanically more stable than the ionogels synthesized with unmodified nanoparticles. The ionogels respond to external permanent magnets and are therefore prototypes of a new soft magnetic actuator.}, language = {en} } @article{JungingerKuebelSchacheretal.2013, author = {Junginger, Mathias and K{\"u}bel, Christian and Schacher, Felix H. and M{\"u}ller, Axel H. E. and Taubert, Andreas}, title = {Crystal structure and chemical composition of biomimetic calcium phosphate nanofibers}, series = {RSC Advances}, volume = {3}, journal = {RSC Advances}, number = {28}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c3ra23348k}, pages = {11301 -- 11308}, year = {2013}, abstract = {Calcium phosphate nanofibers with a diameter of only a few nanometers and a cotton-ball-like aggregate morphology have been reported several times in the literature. Although fiber formation seems reproducible in a variety of conditions, the crystal structure and chemical composition of the fibers have been elusive. Using scanning transmission electron microscopy, low dose electron (nano) diffraction, energy-dispersive X-ray spectroscopy, and energy-filtered transmission electron microscopy, we have assigned crystal structures and chemical compositions to the fibers. Moreover, we demonstrate that the mineralization process yields true polymer/calcium phosphate hybrid materials where the block copolymer template is closely associated with the calcium phosphate.}, language = {en} } @unpublished{BuehlerRabuTaubert2012, author = {B{\"u}hler, Markus J. and Rabu, Pierre and Taubert, Andreas}, title = {Advanced hybrid materials - design and applications}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {32}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201201263}, pages = {5092 -- 5093}, year = {2012}, language = {en} } @article{XieXuGessneretal.2012, author = {Xie, Zai-Lai and Xu, Hai-Bing and Gessner, Andre and Kumke, Michael Uwe and Priebe, Magdalena and Fromm, Katharina M. and Taubert, Andreas}, title = {A transparent, flexible, ion conductive, and luminescent PMMA ionogel based on a Pt/Eu bimetallic complex and the ionic liquid [Bmim][N(Tf)(2)]}, series = {Journal of materials chemistry}, volume = {22}, journal = {Journal of materials chemistry}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c2jm15862k}, pages = {8110 -- 8116}, year = {2012}, abstract = {Transparent, ion-conducting, luminescent, and flexible ionogels based on the room temperature ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl) imide [Bmim][N(Tf)(2)], a PtEu2 chromophore, and poly(methylmethacrylate) (PMMA) have been prepared. The thermal stability of the PMMA significantly increases with IL incorporation. In particular, the onset weight loss observed at ca. 229 degrees C for pure PMMA increases to 305 degrees C with IL addition. The ionogel has a high ionic conductivity of 10(-3) S cm(-1) at 373 K and exhibits a strong emission in the red with a long average luminescence decay time of tau = 890 mu s. The resulting material is a new type of soft hybrid material featuring useful thermal, optical, and ion transport properties.}, language = {en} }