@article{ClarkShakunMarcottetal.2016, author = {Clark, Peter U. and Shakun, Jeremy D. and Marcott, Shaun A. and Mix, Alan C. and Eby, Michael and Kulp, Scott and Levermann, Anders and Milne, Glenn A. and Pfister, Patrik L. and Santer, Benjamin D. and Schrag, Daniel P. and Solomon, Susan and Stocker, Thomas F. and Strauss, Benjamin H. and Weaver, Andrew J. and Winkelmann, Ricarda and Archer, David and Bard, Edouard and Goldner, Aaron and Lambeck, Kurt and Pierrehumbert, Raymond T. and Plattner, Gian-Kasper}, title = {Consequences of twenty-first-century policy for multi-millennial climate and sea-level change}, series = {Nature climate change}, volume = {6}, journal = {Nature climate change}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/NCLIMATE2923}, pages = {360 -- 369}, year = {2016}, abstract = {Most of the policy debate surrounding the actions needed to mitigate and adapt to anthropogenic climate change has been framed by observations of the past 150 years as well as climate and sea-level projections for the twenty-first century. The focus on this 250-year window, however, obscures some of the most profound problems associated with climate change. Here, we argue that the twentieth and twenty-first centuries, a period during which the overwhelming majority of human-caused carbon emissions are likely to occur, need to be placed into a long-term context that includes the past 20 millennia, when the last Ice Age ended and human civilization developed, and the next ten millennia, over which time the projected impacts of anthropogenic climate change will grow and persist. This long-term perspective illustrates that policy decisions made in the next few years to decades will have profound impacts on global climate, ecosystems and human societies - not just for this century, but for the next ten millennia and beyond.}, language = {en} } @article{StraussKulpLevermann2015, author = {Strauss, Benjamin H. and Kulp, Scott and Levermann, Anders}, title = {Carbon choices determine US cities committed to futures below sea level}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {112}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {44}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1511186112}, pages = {13508 -- 13513}, year = {2015}, abstract = {Anthropogenic carbon emissions lock in long-term sea-level rise that greatly exceeds projections for this century, posing profound challenges for coastal development and cultural legacies. Analysis based on previously published relationships linking emissions to warming and warming to rise indicates that unabated carbon emissions up to the year 2100 would commit an eventual global sea-level rise of 4.3-9.9 m. Based on detailed topographic and population data, local high tide lines, and regional long-term sea-level commitment for different carbon emissions and ice sheet stability scenarios, we compute the current population living on endangered land at municipal, state, and national levels within the United States. For unabated climate change, we find that land that is home to more than 20 million people is implicated and is widely distributed among different states and coasts. The total area includes 1,185-1,825 municipalities where land that is home to more than half of the current population would be affected, among them at least 21 cities exceeding 100,000 residents. Under aggressive carbon cuts, more than half of these municipalities would avoid this commitment if the West Antarctic Ice Sheet remains stable. Similarly, more than half of the US population-weighted area under threat could be spared. We provide lists of implicated cities and state populations for different emissions scenarios and with and without a certain collapse of the West Antarctic Ice Sheet. Although past anthropogenic emissions already have caused sea-level commitment that will force coastal cities to adapt, future emissions will determine which areas we can continue to occupy or may have to abandon.}, language = {en} }