@article{GarnierLaschewskyStorsberg2006, author = {Garnier, Sebastien and Laschewsky, Andr{\´e} and Storsberg, J}, title = {Polymeric surfactants : novel agents with exceptional properties}, issn = {0932-3414}, year = {2006}, abstract = {This article presents recent progress in the field of polymeric surfactants made of permanently amphiphilic block copolymers or of stimulus-sensitive ones. We highlight key points in the design of amphiphilic macromolecules, to yield polymer surfactants with tailor-made properties, as well as recently developed and still challenging application fields for this new class of surfactants. The efficiency boosting of amphiphilic block copolymers as co-surfactants in microemulsions is discussed, as are surface modification by polymer surfactants, and stabilization of dispersions. Moreover, the use of block copolymers in nanosciences is presented, for instance as a tool for nanomaterial fabrication, or for biomedical and cosmetic applications in bio-nanotechnology. Finally, self-assembly and applications of some newly developed "exotic" amphiphilic block copolymer structures as new surface-active materials will be highlighted}, language = {en} } @article{LeporattiSczechRiegleretal.2005, author = {Leporatti, S. and Sczech, R. and Riegler, H. and Bruzzano, Stefano and Storsberg, J. and Loth, Fritz and Jaeger, Werner and Laschewsky, Andr{\´e} and Eichhorn, S. and Donath, E.}, title = {Interaction forces between cellulose microspheres and ultrathin cellulose films monitored by colloidal probe microscopy : effect of wet strength agents}, year = {2005}, language = {en} } @article{MertogluGarnierLaschewskyetal.2005, author = {Mertoglu, Murat and Garnier, Sebastien and Laschewsky, Andr{\´e} and Skrabania, Katja and Storsberg, J.}, title = {Stimuli responsive amphiphilic block copolymers for aqueous media synthesised via reversible addition fragmentation chain transfer polymerisation (RAFT)}, issn = {0032-3861}, year = {2005}, abstract = {A series of RAFT agents was synthesised, and used to prepare various ionic. non-ionic and zwitterionic water- soluble polymers, in organic as well as in aqueous media. The RAFT process proved to be a powerful method to prepare functional polymers of complex structure. such as amphiphilic diblock and triblock copolymers. This includes polymers containing one or even two stimuli-sensitive hydrophilic blocks. Switching the hydrophilic character of a single or of several blocks by changing the PH, the temperature or the salt content demonstrated the variability of the molecular designs suited for stimuli-sensitive polymeric amphiphiles, and exemplified the concept of multiple-sensitive systems. (c) 2005 Published by Elsevier Ltd}, language = {en} }