@article{StolbovaSurovyatkinaBookhagenetal.2016, author = {Stolbova, Veronika and Surovyatkina, Elena and Bookhagen, Bodo and Kurths, J{\"u}rgen}, title = {Tipping elements of the Indian monsoon: Prediction of onset and withdrawal}, series = {Geophysical research letters}, volume = {43}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL068392}, pages = {3982 -- 3990}, year = {2016}, abstract = {Forecasting the onset and withdrawal of the Indian summer monsoon is crucial for the life and prosperity of more than one billion inhabitants of the Indian subcontinent. However, accurate prediction of monsoon timing remains a challenge, despite numerous efforts. Here we present a method for prediction of monsoon timing based on a critical transition precursor. We identify geographic regions-tipping elements of the monsoon-and use them as observation locations for predicting onset and withdrawal dates. Unlike most predictability methods, our approach does not rely on precipitation analysis but on air temperature and relative humidity, which are well represented both in models and observations. The proposed method allows to predict onset 2 weeks earlier and withdrawal dates 1.5 months earlier than existing methods. In addition, it enables to correctly forecast monsoon duration for some anomalous years, often associated with El Nino-Southern Oscillation.}, language = {en} } @article{StolbovaMartinBookhagenetal.2014, author = {Stolbova, Veronika and Martin, P. and Bookhagen, Bodo and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka}, series = {Nonlinear processes in geophysics}, volume = {21}, journal = {Nonlinear processes in geophysics}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1023-5809}, doi = {10.5194/npg-21-901-2014}, pages = {901 -- 917}, year = {2014}, abstract = {This paper employs a complex network approach to determine the topology and evolution of the network of extreme precipitation that governs the organization of extreme rainfall before, during, and after the Indian Summer Monsoon (ISM) season. We construct networks of extreme rainfall events during the ISM (June-September), post-monsoon (October-December), and pre-monsoon (March-May) periods from satellite-derived (Tropical Rainfall Measurement Mission, TRMM) and rain-gauge interpolated (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE) data sets. The structure of the networks is determined by the level of synchronization of extreme rainfall events between different grid cells throughout the Indian subcontinent. Through the analysis of various complex-network metrics, we describe typical repetitive patterns in North Pakistan (NP), the Eastern Ghats (EG), and the Tibetan Plateau (TP). These patterns appear during the pre-monsoon season, evolve during the ISM, and disappear during the post-monsoon season. These are important meteorological features that need further attention and that may be useful in ISM timing and strength prediction.}, language = {en} }