@article{RajaonarisonStampsFishwicketal.2020, author = {Rajaonarison, Tahiry A. and Stamps, D. Sarah and Fishwick, Stewart and Brune, Sascha and Glerum, Anne and Hu, Jiashun}, title = {Numerical modeling of mantle flow beneath Madagascar to constrain upper mantle rheology beneath continental regions}, series = {Journal of geophysical research : Solid earth}, volume = {125}, journal = {Journal of geophysical research : Solid earth}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2019JB018560}, pages = {23}, year = {2020}, abstract = {Over the past few decades, azimuthal seismic anisotropy measurements have been widely used proxy to study past and present-day deformation of the lithosphere and to characterize convection in the mantle. Beneath continental regions, distinguishing between shallow and deep sources of anisotropy remains difficult due to poor depth constraints of measurements and a lack of regional-scale geodynamic modeling. Here, we constrain the sources of seismic anisotropy beneath Madagascar where a complex pattern cannot be explained by a single process such as absolute plate motion, global mantle flow, or geology. We test the hypotheses that either Edge-Driven Convection (EDC) or mantle flow derived from mantle wind interactions with lithospheric topography is the dominant source of anisotropy beneath Madagascar. We, therefore, simulate two sets of mantle convection models using regional-scale 3-D computational modeling. We then calculate Lattice Preferred Orientation that develops along pathlines of the mantle flow models and use them to calculate synthetic splitting parameters. Comparison of predicted with observed seismic anisotropy shows a good fit in northern and southern Madagascar for the EDC model, but the mantle wind case only fits well in northern Madagascar. This result suggests the dominant control of the measured anisotropy may be from EDC, but the role of localized fossil anisotropy in narrow shear zones cannot be ruled out in southern Madagascar. Our results suggest that the asthenosphere beneath northern and southern Madagascar is dominated by dislocation creep. Dislocation creep rheology may be dominant in the upper asthenosphere beneath other regions of continental lithosphere.}, language = {en} } @misc{SippelMeessenCacaceetal.2017, author = {Sippel, Judith and Meeßen, Christian and Cacace, Mauro and Mechie, James and Fishwick, Stewart and Heine, Christian and Scheck-Wenderoth, Magdalena and Strecker, Manfred}, title = {The Kenya rift revisited}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {644}, issn = {1866-8372}, doi = {10.25932/publishup-41822}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418221}, pages = {45 -- 81}, year = {2017}, abstract = {We present three-dimensional (3-D) models that describe the present-day thermal and rheological state of the lithosphere of the greater Kenya rift region aiming at a better understanding of the rift evolution, with a particular focus on plume-lithosphere interactions. The key methodology applied is the 3-D integration of diverse geological and geophysical observations using gravity modelling. Accordingly, the resulting lithospheric-scale 3-D density model is consistent with (i) reviewed descriptions of lithological variations in the sedimentary and volcanic cover, (ii) known trends in crust and mantle seismic velocities as revealed by seismic and seismological data and (iii) the observed gravity field. This data-based model is the first to image a 3-D density configuration of the crystalline crust for the entire region of Kenya and northern Tanzania. An upper and a basal crustal layer are differentiated, each composed of several domains of different average densities. We interpret these domains to trace back to the Precambrian terrane amalgamation associated with the East African Orogeny and to magmatic processes during Mesozoic and Cenozoic rifting phases. In combination with seismic velocities, the densities of these crustal domains indicate compositional differences. The derived lithological trends have been used to parameterise steady-state thermal and rheological models. These models indicate that crustal and mantle temperatures decrease from the Kenya rift in the west to eastern Kenya, while the integrated strength of the lithosphere increases. Thereby, the detailed strength configuration appears strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localisation and propagation of rifting.}, language = {en} } @article{SippelMeessenCacaceetal.2017, author = {Sippel, Judith and Meessen, Christian and Cacace, Mauro and Mechie, James and Fishwick, Stewart and Heine, Christian and Scheck-Wenderoth, Magdalena and Strecker, Manfred}, title = {The Kenya rift revisited}, series = {Solid earth}, volume = {8}, journal = {Solid earth}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1869-9510}, doi = {10.5194/se-8-45-2017}, pages = {45 -- 81}, year = {2017}, abstract = {We present three-dimensional (3-D) models that describe the present-day thermal and rheological state of the lithosphere of the greater Kenya rift region aiming at a better understanding of the rift evolution, with a particular focus on plume-lithosphere interactions. The key methodology applied is the 3-D integration of diverse geological and geophysical observations using gravity modelling. Accordingly, the resulting lithospheric-scale 3-D density model is consistent with (i) reviewed descriptions of lithological variations in the sedimentary and volcanic cover, (ii) known trends in crust and mantle seismic velocities as revealed by seismic and seismological data and (iii) the observed gravity field. This data-based model is the first to image a 3-D density configuration of the crystalline crust for the entire region of Kenya and northern Tanzania. An upper and a basal crustal layer are differentiated, each composed of several domains of different average densities. We interpret these domains to trace back to the Precambrian terrane amalgamation associated with the East African Orogeny and to magmatic processes during Mesozoic and Cenozoic rifting phases. In combination with seismic velocities, the densities of these crustal domains indicate compositional differences. The derived lithological trends have been used to parameterise steady-state thermal and rheological models. These models indicate that crustal and mantle temperatures decrease from the Kenya rift in the west to eastern Kenya, while the integrated strength of the lithosphere increases. Thereby, the detailed strength configuration appears strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localisation and propagation of rifting.}, language = {en} }